Abstract:
In an embodiment, a method of characterizing a polycrystalline diamond compact is disclosed. The method includes providing the polycrystalline diamond compact, and measuring at least one magnetic characteristic of a component of the polycrystalline diamond compact.
Abstract:
Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table bonded to a cemented carbide substrate including tungsten carbide grains having a fine average grain size to provide one or more of enhanced wear resistance, corrosion resistance, or erosion resistance, and a PDC with enhanced impact resistance. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together exhibiting an average grain size of about 1.5 μm or less. The substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 μm to about 60 μm. The PDC includes a PCD table bonded to the interfacial surface of the substrate. The PCD table includes diamond grains bonded together exhibiting an average grain size of about 40 μm or less.
Abstract:
Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table having at least two regions and being bonded to a fine grained cemented tungsten carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together that exhibit an average grain size of about 1.5 μm or less, and a PCD table having at least one upper region including diamond grains exhibiting an upper average grain size and at least one lower region adjacent to the upper region a lower average grain size that may be at least two times greater than the upper average grain size. The cemented carbide substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 μm to about 60 μm.
Abstract:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
In an embodiment, a polycrystalline diamond compact includes a substrate, and a polycrystalline diamond (“PCD”) table bonded to the substrate and including an exterior working surface, at least one lateral surface, and a chamfer extending between the exterior working surface and the at least one lateral surface. The PCD table includes bonded diamond grains defining interstitial regions. The PCD table includes a first region adjacent to the substrate and a second leached region adjacent to the first region and extending inwardly from the exterior working surface to a selected depth. At least a portion of the interstitial regions of the first region include an infiltrant disposed therein. The interstitial regions of the second leached region are substantially free of metal-solvent catalyst. The second region is defined by the exterior working surface, the lateral surface, the chamfer, and a generally horizontal boundary located below the chamfer.
Abstract:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
Abstract:
Embodiments relate to a polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table having at least two regions and being bonded to a fine grained cemented tungsten carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate having a cobalt-containing cementing constituent cementing tungsten carbide grains together that exhibit an average grain size of about 1.5 μm or less, and a PCD table having at least one upper region including diamond grains exhibiting an upper average grain size and at least one lower region adjacent to the upper region a lower average grain size that may be at least two times greater than the upper average grain size. The cemented carbide substrate includes an interfacial surface and a depletion zone depleted of the cementing constituent that extends inwardly from the interfacial surface to a depth of, for example, about 30 μm to about 60 μm.
Abstract:
Embodiments of the invention relate to methods of forming polycrystalline diamond compacts (“PDCs”), wherein the PDC includes a polycrystalline diamond (“PCD”) table in which at least one Group VIII metal is at least partially alloyed with phosphorus and/or at least one other alloying element to improve the thermal stability of the PCD table. The disclosed PDCs may be used in a variety of applications, such as rotary drill bits, machining equipment, and other articles and apparatuses.
Abstract:
Embodiments of the invention relate to methods of forming polycrystalline diamond compacts (“PDCs”), wherein the PDC includes a polycrystalline diamond (“PCD”) table in which at least one Group VIII metal is at least partially alloyed with phosphorus and/or at least one other alloying element to improve the thermal stability of the PCD table. The disclosed PDCs may be used in a variety of applications, such as rotary drill bits, machining equipment, and other articles and apparatuses.
Abstract:
Polycrystalline diamond compacts (“PDCs”) and methods of manufacturing such PDCs. In an embodiment, the PDC includes a polycrystalline diamond (“PCD”) table having at least a portion of a metal-solvent catalyst removed therefrom. Removing at least a portion of a metal-solvent catalyst from the PCD table may increase the porosity of the PCD table relative to a PCD table that has not been treated to remove the metal-solvent catalyst. Likewise, removing at least a portion of a metal-solvent catalyst from the PCD table may decrease the specific magnetic saturation and increase the coercivity of the PCD table relative to a PCD table that has not been treated to remove the metal-solvent catalyst.