Abstract:
The invention comprises a charged particle beam path coupling an injector, synchrotron accelerator, beam transport system, targeting system, and/or patient interface method and apparatus. Preferably, the injector comprises: a negative ion beam source, a two phase ion source vacuum system, an ion beam focusing lens, and/or a tandem accelerator. Preferably, the synchrotron comprises turning magnets, edge focusing magnets, magnetic field concentration magnets, winding and correction coils, flat magnetic field incident surfaces, and/or extraction elements. Preferably, the synchrotron, beam transport system, targeting system, and patient interface combine to allow multi-axis/multi-field irradiation, where multi-axis control comprises control of horizontal and vertical beam position, beam energy, and/or beam intensity and multi-field control comprises control of patient rotation and distribution of delivered energy in and about the tumor in a time controlled, targeted, accurate, precise, dosage controlled, and/or efficient manner.
Abstract:
The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and/or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and/or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and/or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Abstract:
The invention comprises a proton beam positioning method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The proton beam verification system allows for monitoring of the actual proton beam position in real-time without destruction of the proton beam. The system includes a coating or thin layer substantially in contact with a foil covering the end of an exit nozzle or is a layer located after the x- and y-axis proton beam scanning controllers and before the patient. The coating yields a measurable spectroscopic response, spatially viewable by the detector, as a result of transmission by the proton beam. The proton beam position is monitored by the detector and compared to the calibration and/or treatment plan to verify accurate proton delivery to the tumor and/or as a proton beam shutoff safety indicator.
Abstract:
The invention comprises a tandem accelerator method and apparatus, which is part of an ion beam injection system used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes an injection system vacuum system and a synchrotron vacuum system separated by a foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system. Having the foil physically separating the vacuum chamber into two pressure regions allows for fewer and/or smaller pumps to maintain the lower pressure system in the synchrotron as the inlet hydrogen gas is extracted in a separate contained and isolated space by the injection partial vacuum system.
Abstract:
The invention comprises an X-ray tomography method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. In various embodiments, 3-D images are generated from a series of 2-D X-rays images; the X-ray source and detector are stationary while the patient rotates; the 2-D X-ray images are generated using an X-ray source proximate a charged particle beam in a charged particle cancer therapy system; and the X-ray tomography system uses an electron source having a geometry that enhances an electron source lifetime, where the electron source is used in generation of X-rays. The X-ray tomography system is optionally used in conjunction with systems used to both move and constrain movement of the patient, such as semi-vertical, sitting, or laying positioning systems. The X-ray images are optionally used in control of a charged particle cancer therapy system.
Abstract:
The invention comprises a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.
Abstract:
The system uses an X-ray imaging system having an elongated lifetime. Further, the system uses an X-ray beam that lies in substantially the same path as a charged particle beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source located proximate to the charged particle beam path. By generating the X-rays near the charged particle beam path, an X-ray path running collinear, in parallel with, and/or substantially in contact with the charged particle beam path is created. The system then collects X-ray images of localized body tissue region about a cancerous tumor. Since, the X-ray path is essentially the charged particle beam path, the generated image is usable for precisely target the tumor with a charged particle beam.
Abstract:
The invention comprises an X-ray method and apparatus used in conjunction with charged particle or proton beam radiation therapy of cancerous tumors. The system uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source where the X-ray generation source is located proximate to the proton beam path. By generating the X-rays near the proton beam path, an X-ray path that is essentially the proton beam path is created. Using the generated X-rays, the system collects X-ray images of a localized body tissue region about a cancerous tumor. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.
Abstract:
The invention relates generally to treatment of solid cancers. More particularly, the invention relates to a multi-field imaging and/or a multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration via use of feedback sensors used to monitor and/or control patient respiration. Preferably, the multi-field imaging, such as X-ray imaging, and the charged particle therapy are performed on a patient in a partially immobilized and repositionable position. X-ray and/or proton delivery is timed to patient respiration via control of charged particle beam injection, acceleration, extraction, and/or targeting methods and apparatus.
Abstract:
The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.