摘要:
A high spectrum efficiency is achieved even in a system where mobile station apparatuses with different units of assignment coexist. A base station apparatus, which performs radio communication with a mobile station apparatus, newly defines a minimum unit of assignment for each of the mobile station apparatuses, determines band assignment, and notifies each of the mobile station apparatuses of assignment information, when a mobile station apparatus with an RB (Resource Block) being a minimum unit of assignment and a mobile station apparatus with an RBG (RB Group) being a minimum unit of assignment coexist. In addition, the minimum unit of is newly defined by defining the number of RBs constituting an RBG for each mobile station apparatus.
摘要:
A communication device includes a turbo encoding section including a plurality of component encoders, wherein the plurality of component encoders within the turbo encoding section use different constraint lengths.
摘要:
Provided is a wireless communication system including a first communication device configured to perform spectral shaping on a frequency signal and transmit the signal, and a second communication device configured to receive the signal transmitted by the first communication device, and the second communication device includes: a frequency averaging unit configured to dividing information on transmission power gains in all the discrete frequencies into blocks by a plurality of discrete frequencies, information being necessary for the first communication device to perform the spectral shaping; a quantizing unit configured to quantize representative values of the blocks; and a transmitting unit configured to transmit the quantized signals.
摘要:
A wireless communication system includes: a multiple number of mobile station apparatuses that transmit code bits obtained by applying error-correction coding to information bits; a relay station apparatus that receives code bits from the multiple mobile station apparatuses, applies network coding on the code bits and transmits the network-code bits; and a base station apparatus that receives and decodes the code bits and the network-code bits, wherein the base station apparatus, when decoding the received code bits, performs iteration decoding by regarding the received code bits as a serially concatenated code of network coding and error correction coding. Accordingly, decoding is performed by regarding the network code and the error correction code as a serial concatenated code, it is possible to obtain diversity with a simple configuration.
摘要:
A wireless communication system which includes a base station and a mobile station and in which the mobile station performs data transmission to the base station by allocating a transmission signal converted into a frequency signal to contiguous frequency bands or non-contiguous frequency bands divided into a predetermined number, wherein, when retransmission occurs in the data transmission the mobile station has performed by allocating the transmission signal converted into the frequency signal into the non-contiguous frequency bands, the base station determines a transmission power headroom of the mobile station in the allocation of the transmission signal to the non-contiguous frequency bands, and, if a result of the determination shows that there is not a transmission power headroom, the base station instructs the mobile station to allocate the transmission signal to the contiguous frequency bands and to perform the retransmission by increasing transmission power.
摘要:
To provide a system that can accommodate a greater number of terminals within a limited band and can obtain a higher transmission rate. While the number of frequency signals (spectrums) output in parallel by performing a spread spectrum from the DFT unit of each terminal is 12, the number of sub-carriers constituting one sub-channel is set at 10 or 11. In this case, the users (users A and G) allocated to the sub-channels at both ends of the band will not perform transmission of one frequency signal at the end (one sub-carrier) of all the frequency signals output from the DFT unit, whereas the users (users B to F) allocated to the other sub-channels will not perform transmission of the frequency signals at the ends (two sub-carriers). This transmission can be realized by deleting (clipping) the associated number of signals from both ends or from one end of the frequency signals output from the DFT unit of each terminal and allocating the frequency signals after clipping, to individual sub-channels.
摘要:
In a radio communication system including a base station apparatus 10, a relay station apparatus 20 that receives a signal transmitted from base station apparatus 10 and re-transmits the signal to terminal apparatuses, a terminal apparatus 30 that directly receives the signal transmitted from the base station apparatus and a terminal apparatus 32 that receives the signal transmitted from base station apparatus 10 via relay station apparatus 20, base station apparatus 10 sets the transmission power of a signal addressed to terminal apparatus 30 high and the transmission power of a signal addressed to terminal apparatus 32 low, adds up the signals and transmits the resultant signal. With this, the signal addressed to the terminal apparatus that directly communicates with the base station apparatus and the signal addressed to the terminal apparatus that communicates with the base station apparatus via the relay station apparatus are multiplexed and transmitted simultaneously, whereby it is possible to provide a radio communication system and the like that enable efficient communication.
摘要:
Disclosed is a radio communication system including relay stations 20 in a cell, which relay communication between a base station 10 and terminals 30 and employing a transmission scheme of adding a signal, in which a part of a symbol is copied, to the symbol as a Cyclic Prefix, in which, when a common broadcast service signal offered to a plurality of terminals 30 is transmitted in the cell, a length of the Cyclic Prefix added to the signal is adaptively set. This makes it possible to provide a radio communication system or the like capable of performing efficient transmission while preventing degradation of performances by appropriately setting the CP length added to an MBMS signal according to conditions, when performing MBMS transmission in the radio communication system including the relay stations.
摘要:
To provide a system that can accommodate a greater number of terminals within a limited band and can obtain a higher transmission rate. While the number of frequency signals (spectrums) output in parallel by performing a spread spectrum from the DFT unit of each terminal is 12, the number of sub-carriers constituting one sub-channel is set at 10 or 11. In this case, the users (users A and G) allocated to the sub-channels at both ends of the band will not perform transmission of one frequency signal at the end (one sub-carrier) of all the frequency signals output from the DFT unit, whereas the users (users B to F) allocated to the other sub-channels will not perform transmission of the frequency signals at the ends (two sub-carriers). This transmission can be realized by deleting (clipping) the associated number of signals from both ends or from one end of the frequency signals output from the DFT unit of each terminal and allocating the frequency signals after clipping, to individual sub-channels.
摘要:
It is aimed to expand a coverage area of a transmission apparatus by relay, while improving spectral efficiency (cell throughput). A relay apparatus for transmitting a signal received from a transmission apparatus to a reception apparatus has a received signal processing section 33 that demodulates a signal received from the transmission apparatus, a selecting section 34 that selects a transmission scheme enabling the reception apparatus to demodulate from among a plurality of transmission schemes, and signal generating sections 35a and 35b that generate a signal used in the transmission scheme selected by the selecting section 34 based on the signal demodulated by the received signal processing section 33.