Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes rectangular islands disposed in rows. A configurable mesh data bus includes a command mesh, a pull-id mesh, and two data meshes. The configurable mesh data bus extends through all the islands. For each mesh, each island includes a centrally located crossbar switch and eight half links. Two half links extend to ports on the top edge of the island, a half link extends to a port on a right edge of the island, two half links extend to ports on the bottom edge of the island, and a half link extents to a port on the left edge of the island. Two additional links extend to functional circuitry of the island. The configurable mesh data bus is configurable to form a command/push/pull data bus over which multiple transactions can occur simultaneously on different parts of the integrated circuit.
Abstract:
Secured transmissions between a client and a server are detected, a policy formulated whether encrypted material needs to be decrypted, and if content is to be decrypted it is, using decrypting information obtained from the client and server. Resulting plain test is then deployed to an entity such as a processor, store or interface. The plain text can be checked or modified. The transmission between client and server could be blocked, delivered without being decrypted, decrypted and then re-encrypted with or without modification. Each transmission is given an ID and a policy tag.
Abstract:
A microcontroller system may include a microcontroller having a processor and a first memory, a memory bus and a second memory in communication with the microcontroller via the memory bus. The first memory may include instructions for accessing a first data set from a contiguous memory block in the second memory. The first data set may include a first word having a first value and a plurality of first other words. The first memory may include instructions for receiving a write instruction including a second data set to be written to the contiguous memory block. The first memory may include instructions for determining whether the first value equals the second value. If so, the first memory may include instructions for writing the second data set to the contiguous memory block and updating the first value.
Abstract:
A system and method for handling a digital electronic flow between a first and second entity in which a flow policy is determined that is to be applied to the flow and the flow is then directed along a path in accordance with the policy. An ID is supplied for each flow and a tag associated with each flow which indicates the policy to be applied to its associated flow. Flows are also associated with one another, with associated flows having associated policies. In particular the flow may be processed or forwarded. The path may include a graph structure and virtual applications.
Abstract:
A system and method for handling a digital electronic flow between a first and second entity in which a flow policy is determined that is to be applied to the flow and the flow is then directed along a path in accordance with the policy. An ID is supplied for each flow and a tag associated with each flow which indicates the policy to be applied to its associated flow. Flows are also associated with one another, with associated flows having associated policies. In particular the flow may be processed or forwarded. The path may include a graph structure and virtual applications.
Abstract:
The flow cache of a network flow processor (NFP) stores flow lookup information in cache lines. Some cache lines are stored in external bulk memory and others are cached in cache memory on the NFP. A cache line includes several lock/hash entry slots. Each slot can store a CAM entry hash value, associated exclusive lock status, and associated shared lock status. The head of a linked list of keys associated with the first slot is implicitly pointed to. For the other lock/entry slots, the cache line stores a head pointer that explicitly points to the head. Due to this architecture, multiple threads can simultaneously process packets of the same flow, obtain lookup information, and update statistics in a fast and memory-efficient manner. Flow entries can be added and deleted while the flow cache is handling packets without the recording of erroneous statistics and timestamp information.
Abstract:
A multiprocessor system includes several processors, a Shared Local Memory (SLMEM) that stores instructions and data, a system interface block, a posted transaction interface block, and an atomics block. Each processor is coupled to the system interface block via its AHB-S bus. The posted transaction interface block and the atomics block are shared resources that a processor can use via the same system interface block. A processor causes the atomics block to perform an atomic metering operation by doing an AHB-S write to a particular address in shared address space. The system interface block translates information from the AHB-S write into an atomics command, which in turn is converted into pipeline opcodes that cause a pipeline within the atomics block to perform the operation. An atomics response communicates result information which is stored into the system interface block. The processor reads the result information by reading from the same address.
Abstract:
The flow cache of a network flow processor (NFP) stores flow lookup information in cache lines. Some cache lines are stored in external bulk memory and others are cached in cache memory on the NFP. A cache line includes several lock/hash entry slots. Each slot can store a CAM entry hash value, associated exclusive lock status, and associated shared lock status. The head of a linked list of keys associated with the first slot is implicitly pointed to. For the other lock/entry slots, the cache line stores a head pointer that explicitly points to the head. Due to this architecture, multiple threads can simultaneously process packets of the same flow, obtain lookup information, and update statistics in a fast and memory-efficient manner. Flow entries can be added and deleted while the flow cache is handling packets without the recording of erroneous statistics and timestamp information.
Abstract:
An addressless merge command includes an identifier of an item of data, and a reference value, but no address. A first part of the item is stored in a first place. A second part is stored in a second place. To move the first part so that the first and second parts are merged, the command is sent across a bus to a device. The device translates the identifier into a first address ADR1, and uses ADR1 to read the first part. Stored in or with the first part is a second address ADR2 indicating where the second part is stored. The device extracts ADR2, and uses ADR1 and ADR2 to issue bus commands. Each bus command causes a piece of the first part to be moved. When the entire first part has been moved, the device returns the reference value to indicate that the merge command has been completed.
Abstract:
An array of columns and rows of host server devices is mounted in a row of racks. Each device has a host processor and an exact-match packet switching integrated circuit. Packets are switched within the system using exact-match flow tables that are provisioned by a central controller. Each device is coupled by a first cable to a device to its left, by a second cable to a device to its right, by a third cable to a device above, and by a fourth cable to a device below. In one example, substantially all cables that are one meter or less in length are non-optical cables, whereas substantially all cables that are seven meters or more in length are optical cables. Advantageously, each device of a majority of the devices has four and only four cable ports, and connects only to non-optical cables, and the connections involve no optical transceiver.