Abstract:
A CAM device for comparing a search key with a plurality of CAM words stored in a main CAM array includes a pre-compare CAM array and match line control logic. The pre-compare CAM array includes a plurality of rows, each for storing a set of pre-compare bits generated by performing a logical function on a corresponding CAM word. The match line control logic selectively pre-charges match lines in the main CAM array in response to match results from a pre-compare operation between an encoded search key and corresponding sets of pre-compare bits.
Abstract:
A method and apparatus are described for the filtering of a common input string to generate various filtered comparand strings. The filtering of a common input string enables concurrent lookups in different tables to be performed on multiple filtered comparands by different CAM devices (or different blocks within a CAM device), to compare the data in the filtered comparand strings with data stored in its associative memory. By performing multiple lookups in parallel, rather than sequentially, packet throughput in a CAM may be significantly increased.
Abstract:
A content addressable memory (CAM) device with selective error logging. The CAM device includes a CAM array and an error detection circuit coupled to receive a data value from a selected storage location within the CAM array, the error detection circuit being adapted to generate an error indication according to whether the data value includes an error. An error storage circuit is couple to receive the error indication from the error detection circuit and is adapted to store an error address that corresponds to the selected storage location if the error indication indicates that the data value includes an error and if the error address is not already stored within the error storage circuit.
Abstract:
A bit line control circuit is coupled between a bit line of an associated Content Addressable Memory (CAM). Array and a supply voltage. The bit line control circuit adjusts the charge current for the bit line in response to a bit line control signal. For some embodiments, the bit line control circuit includes a dynamic component and a static component to control the bit line.
Abstract:
A content addressable memory (CAM) has a main array including a plurality of rows of CAM cells, one or more spare rows of CAM cells selectable to functionally replace defective rows of CAM cells in the main array, and a control circuit for disabling the defective rows by writing predetermined data to the defective rows of CAM cells.
Abstract:
A monolithic Multi-chip Module (MCM) package includes two or more individual CAM dice mounted on a substrate formed as, for example, a plastic ball grid array (PBGA) package. The substrate includes an interconnect structure to route signals between corresponding pads of the CAM dice and balls of the MCM package. In some embodiments, the footprint of the MCM ball grid array package is identical to the footprint of a similar PBGA package housing a single CAM die. Each CAM die within the MCM package may be assigned the same device identification number (DID).
Abstract:
A content addressable memory (CAM) cell includes a memory cell storing data values. The memory cell includes a surrounding-gate thyristor and an access transistor. The CAM cell also includes a compare circuit coupled among the memory cell and a match line. The compare circuit receives data and comparand data and affects a logical state of a match line in response to a predetermined relationship between the data and comparand data. The compare circuit includes a first transistor set coupled for conduction state control by signals representative of the data, and a second transistor set coupled for conduction state control by signals representative of the comparand data.
Abstract:
A ternary content addressable memory (CAM) cell. For one embodiment, the ternary CAM cell includes a first memory cell, a compare circuit, a second memory cell and a mask circuit. The first memory cell is coupled to a first pair of bit lines that carries data to and from the first memory cell. The compare circuit receives comparand data on a pair of compare signal lines, and compares the comparand data with the data stored in the first memory cell. The compare circuit includes a pair of transistors and a match transistor. The pair of transistors receives the comparand data on the compare signal lines and also receives the data stored in the first memory cell. The match transistor determines the state of a match line. The second memory cell stores mask data that may mask the comparison result such that it does not affect the logical state of the match line.
Abstract:
A method and apparatus for cascading content addressable memory (CAM) devices is disclosed. The method and apparatus may be particularly useful when depth cascading CAM devices that operate in a flow-through mode. In the flow-through mode, a compare instruction may be simultaneously provided to each CAM device in the cascade, and the match address, data stored at the matched location, or other status information may then be output to a common output data bus by the highest priority matching CAM device in the same cycle that the instruction is provided to the CAM devices. Each CAM device may have a cascade input and a cascade output to perform the cascade function. The cascade output of a higher priority CAM device may be connected to the cascade input of the next lower priority CAM device. The higher priority CAM device may assert a cascade signal on its cascade output at a predetermined time after receiving an input signal (e.g., a clock signal). Asserting the cascade signal may indicate that the higher priority CAM device has completed the compare instruction. When the lower priority CAM device detects that the cascade signal has been asserted on its cascade input, the lower priority CAM device may sample the match flag of the higher priority CAM device to determine if the lower priority CAM device may output its data to the common output data bus.
Abstract:
A match line control circuit includes a weak, static pull-up transistor and a strong, dynamic pull-up transistor coupled between a match line of an associated CAM and a supply voltage. Prior to compare operations, both the static pull-up transistor and the dynamic pull-up transistor are in a conductive state and thereby quickly charge the match line to the supply voltage. During compare operations, the dynamic transistor is turned off to reduce current flow between the supply voltage and the match line. In some embodiments, the static pull-up transistor and the dynamic pull-up transistor are configured to match the parasitics of the CAM cells 10 coupled to the match line, thereby increasing performance of the associated CAM.