Abstract:
A planting system including a plurality of seeding row assemblies, each having components maintained at a controlled elevation. The seeding row assembly includes a tillage row unit controlled to maintain a desired elevation relative to a seeding row unit, the seeding row unit being configured to passively follow the local terrain. Each seeding row assembly can include two position sensors that generate signals corresponding to the elevation of the seeding row unit and the ground engagement attachment, respectively, or a differential position sensor that generates signals corresponding to the difference in the elevations. Various embodiments include a local closed loop controller that adjusts elevation of the tillage row unit relative to the seeding row unit to a desired set point. In some embodiments, the down force of the seeding row unit is actively controlled.
Abstract:
Systems, methods and apparatus are provided for monitoring and controlling an agricultural implement, including seed planting implements. Systems, methods and apparatus are provided for detecting seeds being conveyed by seed conveyor.
Abstract:
A system for planting cover crop seeds in fields with standing row crops. A high-clearance agricultural vehicle is provided with a high-clearance toolbar. The system is provided with soil sealers. A seeder with a reciprocating seeder is provided above the soil sealers to deliver various types of seeds onto the disrupted soil, after which the soil sealers cover the seeds with soil.
Abstract:
A seed tube guard for agricultural planters is cast from a high-chrome cast-iron alloy or manufactured from other wear-resistant material. The seed tube guard has a leading front surface, a trailing rear surface, and respective right and left surfaces. A fluid delivery channel is integrated within the body of the seed tube guard between the leading front surface and the trailing rear surface, and between the right and left surfaces. The fluid delivery channel has an entrance and an exit with the exit located below and rearward of the entrance for delivering fluid into a seed furrow ahead of a seed tube exit.
Abstract:
A downforce controller for an agricultural implement having a double-acting hydraulic cylinder. The cylinder is configured to be coupled to an agricultural row unit and an agricultural toolbar for transmitting a net downforce between the agricultural toolbar and the agricultural row unit. A first pressure in the first chamber of the cylinder and a second pressure in the second chamber of the cylinder having counteracting effects on the net downforce. A manifold coupled to the cylinder is in fluid communication with the first chamber. A pressure control valve supported by the manifold is in fluid communication with the manifold and the first chamber.
Abstract:
A scraper body adapted to be attached to a furrow opener assembly with a disc rotatably mounted on an arm and oriented at a horizontal angle to create a disc furrow. The scraper body has an attachment body portion adapted to be attached to the furrow opener assembly such that a forward scraping edge of the scraper body scrapes soil from the disc face. A wing member extends from a lower rear portion of the scraper body, and has a top wing member edge oriented in alignment with the disc furrow and with the operating travel direction. Right and left wings extending downward and outward from the top wing member edge to bottom wing edges located above a bottom edge of the disc such that in operation the wings push soil to corresponding right and left sides of the disc furrow to create right and left wing furrows.
Abstract:
Agricultural planter row units feature soil finishing assemblies for closing a seed groove after seed is placed in the soil. An adjustable furrow closing assembly enhances upper seed groove coverage and closure with soil resulting in sustained relative humidity levels and optimum seed-to-soil contact for faster seed germination. The furrow closing assembly includes a closing wheel assembly having at least one closing wheel and a press wheel assembly having a press wheel following behind the closing wheels. The closing wheels and press wheel are attached to the planter row unit in a manner allowing the press wheel to move vertically relative to the closing wheels. Adjustable down-force systems are provided to vary the down force applied to the closing wheels and the press wheel to maintain optimum soil contact in irregular terrain and in varying soil densities and conditions to provide optimum soil coverage and compaction of the seed bed.
Abstract:
Agricultural devices, row unit adjustment systems, and methods of adjusting a depth of a furrow are provided. In some aspects, an agricultural device is adapted to plant seeds and includes a frame, a furrow opener coupled to the frame and adapted to cut a furrow including a depth, a sensor adapted to sense a characteristic associated with planting seeds and generate a signal associated with the sensed characteristic, and a processing unit receiving the signal associated with the sensed characteristic. The depth of the furrow is adjustable based on the signal associated with the sensed characteristic. Such characteristic may be a characteristic of the soil, a force applied to the agricultural device, or a position of a portion of the agricultural device.
Abstract:
A double shoot coulter assembly for an agricultural implement includes a packer wheel. The packer wheel is disposed behind a soil engaging blade. The packer wheel is configured to press soil displaced by the soil engaging blade into trenches formed by the soil engaging blade and a disc blade. A centerline of the packer wheel extends adjacent to a soil displacing side of the soil engaging blade.
Abstract:
One row unit for an agricultural implement includes a ground engaging tool configured to penetrate soil and to form a furrow in the soil. The row unit also includes gauge wheels disposed adjacent to the ground engaging tool and configured to enable the ground engaging tool to penetrate the soil at a selectable penetration depth. Each of the gauge wheels extends substantially parallel to a direction of travel of the row unit.