Abstract:
A product reservoir is provided that includes a flexible bag and a carton to receive and retain the flexible bag. The bag may contain liquid chemical substances that are dispensed from the bag through a bag spout. The product reservoir may serve as a component to a fluid delivery system, such as a direct injection system employed by agricultural seed planting machines. When the bag is connected to the direct injection system, the liquid substance is placed in fluid communication with a delivery device whereby the substance can be dispensed to a selected area for treatment. The liquid substance may be mixed in-line with water received from a water reservoir prior to being dispensed by the delivery device. The planting machine may be equipped with a plurality of product reservoirs. A method of applying a liquid pesticide to a selected area is also provided.
Abstract:
Agricultural seed planting systems are provided. In some aspects, the system includes a processing unit, a frame, a furrow opener coupled to the frame for opening a furrow in soil, and a sensor in communication with the processing unit and adapted to sense a characteristic associated with seed planting. The sensor may generate a signal associated with the sensed characteristic and the processing unit may receive the signal. In some aspects, the sensed characteristic may be either a soil characteristic or a seed characteristic. Information associated with the sensed characteristic can be saved in memory for future use and to assist with more effective planting in the future.
Abstract:
Agricultural devices, row unit adjustment systems, and methods of adjusting a depth of a furrow are provided. In some aspects, an agricultural device is adapted to plant seeds and includes a frame, a furrow opener coupled to the frame and adapted to cut a furrow including a depth, a sensor adapted to sense a characteristic associated with planting seeds and generate a signal associated with the sensed characteristic, and a processing unit receiving the signal associated with the sensed characteristic. The depth of the furrow is adjustable based on the signal associated with the sensed characteristic. Such characteristic may be a characteristic of the soil, a force applied to the agricultural device, or a position of a portion of the agricultural device.
Abstract:
A product reservoir is provided that includes a flexible bag and a carton to receive and retain the flexible bag. The bag may contain liquid chemical substances that are dispensed from the bag through a bag spout. The product reservoir may serve as a component to a fluid delivery system, such as a direct injection system employed by agricultural seed planting machines. When the bag is connected to the direct injection system, the liquid substance is placed in fluid communication with a delivery device whereby the substance can be dispensed to a selected area for treatment. The liquid substance may be mixed in-line with water received from a water reservoir prior to being dispensed by the delivery device. The planting machine may be equipped with a plurality of product reservoirs. A method of applying a liquid pesticide to a selected area is also provided.
Abstract:
In one embodiment, a seeding implement includes a frame configured to couple to a tool bar, a parallel linkage coupled to the frame, and a ground engaging tool extending from a shank, wherein the shank is coupled to the parallel linkage. The implement also includes a packer wheel configured to control a position of the ground engaging tool, wherein the packer wheel is positioned directly behind the ground engaging tool when the ground engaging tool is engaging a soil region. Further, the implement includes an adjustment mechanism configured to shift the packer wheel rearwardly upon the ground engaging tool encountering an obstruction and to shift the packer wheel forwardly after the obstruction has been passed by the ground engaging tool.
Abstract:
An emissions recycling system is used on a vehicle towing an agricultural implement to enrich the fertility of the soil. The system includes an exhaust collector for collecting exhaust emissions from the internal combustion engine of the towing vehicle and an exhaust distribution system for injecting at least a portion of the exhaust emissions collected by the exhaust collector into the ground worked by the ground working tools of the agricultural implement. Fertility of the soil is enriched by bioactivity within the soil's micro flora which consumes the greenhouse gas and emissions.
Abstract:
The configuration of a feedstock material is controlled by bringing it into contact with at least a first gas moving against it at a location with an area and thickness of the feedstock liquid that forms drops or fibers of a selected size. In one embodiment, drops of agricultural input materials are formed for spraying on agricultural fields. In another embodiment, nanofibers of materials such as chitosan or metals are formed. In another embodiment seeds are planted with gel.
Abstract:
In one embodiment, a seeding implement includes a frame configured to couple to a tool bar, a parallel linkage coupled to the frame, and a ground engaging tool extending from a shank, wherein the shank is coupled to the parallel linkage. The implement also includes a packer wheel configured to control a position of the ground engaging tool, wherein the packer wheel is positioned directly behind the ground engaging tool when the ground engaging tool is engaging a soil region. Further, the implement includes an adjustment mechanism configured to shift the packer wheel rearwardly upon the ground engaging tool encountering an obstruction and to shift the packer wheel forwardly after the obstruction has been passed by the ground engaging tool.
Abstract:
An apparatus, system and method for removing and treating contaminated materials on a bottom of a body of water and introducing growth packets to revitalize the treated bottom of the body of water. The structure may comprise a vessel with an open face. The vessel may be lowered down to the bottom of the body of water with the face facing down. As a result, the vessel and the bottom form an isolated space. The structure may comprise at least one agitating device(s) for stirring up the materials inside the vessel so as to form a mixture containing the sediment materials which in turn contain the contaminants. Multiple at least one pipe(s) may be coupled to the vessel for transporting the mixture out of the vessel for processing (filtering, treating with chemicals, etc.) so as to neutralize or eliminate the contaminants in the mixture. Then, the treated mixture can be returned to the inside of the vessel via the at least one pipe(s).
Abstract:
In one embodiment, a seeding implement includes a frame configured to couple to a tool bar, a parallel linkage coupled to the frame, and a ground engaging tool extending from a shank, wherein the shank is coupled to the parallel linkage. The implement also includes a packer wheel configured to control a position of the ground engaging tool, wherein the packer wheel is positioned directly behind the ground engaging tool when the ground engaging tool is engaging a soil region. Further, the implement includes an adjustment mechanism configured to shift the packer wheel rearwardly upon the ground engaging tool encountering an obstruction and to shift the packer wheel forwardly after the obstruction has been passed by the ground engaging tool.