Abstract:
A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. Some embodiments provide that, among other targets, ocular structures are treated. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
Three camera rigs are connected by wiring to a computer. The computer is also connected to a treatment apparatus. A mechanical couch is provided as part of the treatment apparatus such that under the control of the computer the relative positions of the mechanical couch and the treatment apparatus may be varied. The camera rigs obtain video images of a patient lying on the mechanical couch the computer processes these images to generate a three-dimensional model of the surface of the patient which is utilized to position the patient relative to the treatment apparatus.
Abstract:
A portable orthovoltage radiotherapy system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system. In some embodiments, the position of the ocular structure is tracked and related to the status of the radiosurgery system. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, the structure is an eye and the eye is tracked by the system. In some embodiments, the eye is held in place and in some embodiments, the eye is fixed by the patient. In some embodiments, a fiducial is placed on the eye to aid in positioning. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
An apparatus for the representation of an area on the three-dimensional surface of a patient's body, with a control device which provides three-dimensional coordinates of at least one area to be represented on the surface of the patient's body, wherein the area pre-sets a desired intersection area of a radiation area on the surface of the patient's body, characterized in that at least one projection device featuring a laser is provided, by which the desired intersection area can be projected to the three-dimensional surface of the patient's body on the basis of the provided coordinates, while at least one laser beam generated by the laser can be guided along the contour of the desired intersection area sufficiently rapidly, so that the impression of a closed contour around the desired intersection area results.
Abstract:
A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, ocular structures are placed in a global coordinate system, based on ocular imaging, which leads to direction of an automated positioning system. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial aids in positioning the system. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, the target tissues inside the global coordinate system lead to direction of an automated positioning system that is directed based on the target tissues within the coordinate system. In some embodiments, a treatment plan is utilised in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers selected doses of radiation to a target in a body. The system includes one or more excitable markers positionable in or near the target, an external excitation source that remotely excites the markers to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the marker measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is co-incident with the machine isocenter before and during radiation therapy.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, the target tissues inside the global coordinate system lead to direction of an automated positioning system that is directed based on the target tissues within the coordinate system. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
An apparatus for the representation of an area on the three-dimensional surface of a patient's body, with a control device which provides three-dimensional coordinates of at least one area to be represented on the surface of the patient's body, wherein the area pre-sets a desired intersection area of a radiation area on the surface of the patient's body, characterised in that at least one projection device featuring a laser is provided, by which the desired intersection area can be projected to the three-dimensional surface of the patient's body on the basis of the provided coordinates, while at least one laser beam generated by the laser can be guided along the contour of the desired intersection area sufficiently rapidly, so that the impression of a closed contour around the desired intersection area results.