Abstract:
A method for allocating destination calls in an elevator system, the system including at least one multi-deck elevator, where the passenger gives his/her destination floor by means of a destination call device at the beginning of the journey route, thereby defining the starting point and final point of the passenger's journey route in the elevator system. The method includes the steps of generating possible route alternatives from the starting point to the final point of the journey route, determining a cost function containing at least one travel time term, determining the value of the travel time term corresponding to each route alternative in the cost function, calculating the total cost of each route alternative by using the cost function, allocating for the passenger the route alternative that gives the minimum total cost, and guiding the passenger to a waiting lobby and/or elevator consistent with the route alternative allocated.
Abstract:
The present invention discloses an extension to a prior-art genetic algorithm, with which the routing of elevators based on the calls given in an elevator system is formed. A new type of gene, a so-called run type gene, is connected to the chromosome of the genetic algorithm according to the invention, with which gene the desired speed profile for the elevator trip can be set. In this way e.g. an upper limit can be set for the acceleration or for the maximum travel speed of the elevator. By means of the run type gene a kinetic energy term is included in the optimization. The energy consumed by the system can thus be minimized more effectively by means of the algorithm, because the varying travel speeds of the elevators create more freedom of choice for the chromosomes of the algorithm.
Abstract:
The present invention discloses a method for optimal routing of the elevators in an elevator system in a situation where the supply power received by the system is limited e.g. due to emergency power operation. In the invention, routes are optimized by using a cost function to which has been added a term containing the summed instantaneous power consumed. Power consumption is monitored in real time, and the elevators need a start permission from the control system. A route alternative that exceeds the power limit is penalized in the cost function by a so-called penal term. With the elevator routing obtained as a result, the instantaneous power consumed by the system remains continuously below the set power limit. Some call can thus be postponed to be served later. By the method of the invention, the number of elevators serving passengers in an emergency power situation can be varied dynamically.
Abstract:
An elevator operation system and apparatus reduce the round trip time of an elevator, by determining a target floor that corresponds to the destination floor requested by a passenger; and assigning the target floor to one of a plurality of elevators for service exclusively to the target floor.
Abstract:
Energy saving methods and apparatus for elevator systems having a plurality of elevator cars operating in a plurality of elevator shafts are disclosed. The present invention provides methods and apparatus for determining which one of the plurality of elevator cars is to be assigned to a new hall call in order to reduce the net energy consumption of the elevator system over time.
Abstract:
The nullSEEDSnull assignment process shall address directly the equalization of service and use of all cars and will specifically control the demand/assignment process to minimize round trip times. SEEDS will create zones consisting of contiguous or near contiguous demands. SEEDS shall specifically evaluate the best potential assignment for each demand based on its overall effect on the system. Each demand (Origin and Destination) will be assigned, not on the basis of the best solution for the individual demand, but on the basis of its effect on the total system. The primary target is the equalization of service to all calls rather than the best response to each individual demand. Assignments, which increase the total number of system stops made or those, which increase the relative round trip beyond the mean round trip time of all cars will be avoided. All nullElevator Group Systemsnull (conventional or destination type) of recent invention have been based on nullCost of Servicenull algorithms (e.g.: Shortest waiting times) using as few elevators in the group as possible, with no direct means of controlling equalization of service characteristics or equipment use, or creating contiguous demand assignment.
Abstract:
A procedure for controlling an elevator group consisting of double deck elevators consists of allocating landing calls to elevators and elevator decks in such a way that passenger journey time is optimized. The time of the call and the estimated time of arrival to destination floor are taken into account. Passenger flow and elevator status within the elevator group are monitored and passenger wait time and arrive time estimated based thereon. The best elevator is selected to minimize passenger wait and ride time. The best deck is further selected based on the estimated wait time and ride time to minimize passenger journey time.
Abstract:
The invention relates to a procedure for controlling an elevator group consisting of double-deck elevators. According to the invention, landing calls are allocated to the elevators and after that to the elevator decks in such a way that the passenger journey time is optimised. The procedure of the invention takes into account the time the call has been on and the estimated time of arrival to the destination floor.
Abstract:
An elevator group supervisory control system for selecting the most suitable car among a plurality of elevators, when a hall call is made, to assign to the hall call, comprising: temporary assigning means for temporarily assigning the car by a conventional method such as a fuzzy group supervisory control based on group data representing states of the elevator system at the moment when a new hall call is made; and a neural net for receiving numerical values converted from group data including the result of judgment of the temporary assigning means and outputting an assignment fitness of each elevator. It decides the most suitable elevator from the output pattern of the neural net to assign to the hall call.
Abstract:
The traffic mode of an elevator system is set according to the number and frequency of passengers departing and arriving at a building lobby. The traffic mode is expressed as a fuzzy logic set having a term indicative of up peak mode, a term indicative of down peak mode, and a term indicative of off peak mode. The degrees of membership of each term are indicative of the degrees to which the elevator system exhibits characteristics of the respective modes.