Abstract:
A gas turbine engine includes a nacelle defining a centerline axis and an annular splitter radially inward from the nacelle. A spinner is radially inward of the nacelle forward of a compressor section. A fan blade extends from a fan blade platform. A distance X is the axial distance from a first point to a second point, wherein the first point is defined on a leading edge of the annular splitter and the second point is defined on a leading edge of the fan blade where the fan blade meets the fan blade platform. A distance H is the radial distance from the first point to the second point. The relative position of the first point and the second point is governed by the ratio of X/H≧1.5 for reducing foreign object debris (FOD) intake into the compressor section.
Abstract:
An environmental defense shield includes symmetric airfoil-shaped vanes contributing to and positioned around a plenum space and positioned in front of a turbine engine. An annular band stiffener is set into the vanes, which projects forward in a diminishing size, the vanes merging together to create or attaching to a solid nose. The environmental defense shield serves to protect the engine from debris while also smoothing airflow into the engine.
Abstract:
An aircraft engine guard, for protecting an aircraft engine against ingestion of large objects, includes a generally cone-shaped body, a base section of the rear end of the guard body and a dome section at the distal forward end of the guard body, at least three, vertical, peripherally extending walls located between the base and the dome section, with successive ones of the peripheral walls having different peripheral dimensions, peripherally cylindrical, with the dimension increasing from the base toward the dome section. A plurality of air intake openings are defined in and between the peripheral walls with at least one dimensional size which is small enough to prevent having birds from being able to pass through the guard into the aircraft engine.
Abstract:
Turbine engine (110) having a nacelle (126) comprising, upstream, an air intake fairing (126a) and an element (140) for deflecting foreign objects which defines with said fairing an air intake flow path for supplying air to two coaxial flow paths, namely a radially inner and a radially outer flow path, said outer flow path being defined by a hub housing (152) and scoops, said hub housing (152) and said scoops (144) being installed downstream of the element (140) for deflecting objects, characterised in that each scoop comprises two independent portions, namely an upstream portion (144a) borne by the hub housing (152) and a downstream portion (144b) borne by the nacelle (162).
Abstract:
A turbomachine casing including a substantially cylindrical wall and an annular one-piece acoustic insulation panel mounted inside the wall, the panel including an annular surface that is radially external opposite a radially internal annular surface of the wall, wherein the wall includes on its internal angular surface first projecting members which bear axially against second projecting members belonging to the external annular surface of the panel and which are fixed to these second members in a dismountable manner.
Abstract:
Embodiments include an inlet particle separator system for a gas turbine engine. The inlet particle separator system includes an inertial particle separator that separates incoming air into a cleaned air flow and a scavenge flow. Embodiments may also include an ejector that provides a draw on a scavenge duct and entrains the scavenge flow into a charged flow, e.g., such as the output of a first stage fan. The ejector may have a variable output.
Abstract:
Certain embodiments herein relate to systems and methods for managing turbine intake filters. In one embodiment, a system can include at least one memory configured to store computer-executable instructions and at least one control device configured to access the at least one memory and execute the computer-executable instructions. The instructions may be configured to receive information associated with a filter and identify the filter based at least in part on the information received. The instructions may be further configured to pulse the filter based at least in part on the information received.
Abstract:
An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, a splitter, and a hub suction flow passage. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a main flow passageway that has an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub suction flow passage has a hub suction inlet port and a hub suction outlet port. The hub suction inlet port extends through the hub section and is in fluid communication with the air inlet. The hub suction outlet port extends through the splitter and is in fluid communication with the scavenge flow path.
Abstract:
A cooling system for use in a turbine assembly is provided. The cooling system includes a first filter configured to remove particles entrained in a flow of intake air, an array of nozzles downstream from the first filter, and a second filter downstream from the array. The array of nozzles is configured to facilitate reducing a temperature of the intake air, and the second filter is configured to repel cooling liquid discharged from the array of nozzles while allowing cooled intake air to flow therethrough.
Abstract:
A gas turbine engine and an apparatus for operating the gas turbine engine includes at least one microphone to detect the sound of impacts of particles, a recorder to record the sound of the impacts, an analyzer to analyze the sound of the impacts of the particles, and a store of sounds of impacts, the stored sounds of impacts correspond to unfavorable weather conditions. A comparator compares the sound of the impacts of particles with one or more sounds of impacts stored in the store 68 sounds of impacts and if the comparator determines that the sound of the impacts of particles matches one or more stored sounds of impacts, a signal is sent to a control system for the gas turbine engine to adjust the operation of the gas turbine engine such that it operates in a safe mode of operation.