Abstract:
The inner surface shape measurement device, which measures an inner surface shape of a small hole formed in a workpiece, includes: a rotating body for rotating the workpiece around a rotation axis, and a linear-and-tilting-motion stage; an elongated probe capable of being inserted into the small hole of the workpiece; a probe linear-and-tilting-motion mechanism capable of adjusting posture of the probe; a camera, configured to be rotatable integrally with the rotating body, for imaging the probe from at least three circumferential positions on a rotation trajectory centered on a rotation axis; and a controller for adjusting the posture of the probe using the probe linear-and-tilting-motion mechanism based on an image taken by the camera at each of the circumferential positions.
Abstract:
A shape analysis method for analyzing shape data acquired by measuring a contour shape of a workpiece to be measured, includes: deciding a geometric element used in shape analysis; deciding one data point to be included in an evaluation range; applying the geometric element to an interval including the one data point; searching the widest interval for satisfying a threshold condition of a preset shape tolerance while changing a width of the interval; pinpointing two boundary points between which the interval found by the search is sandwiched; obtaining two edge points at which the two boundary points are respectively shifted by preset shift amounts; setting a range sandwiched between the edge points in the evaluation range; and targeting the shape data within the evaluation range for calculation of geometric properties.
Abstract:
A device (1) for measuring a valve seat formed in a piece has an elongate shape and defines a longitudinal axis (A), and includes: a slide (9), slidingly coupled to a guide (11) for translating in a scanning direction (B) inclined to the longitudinal axis; a sensor (10), mounted on the slide for measuring a parameter relating to a profile of the seat; a processing unit connected to the sensor; a rotary actuator (13) defining a longitudinal rotation axis substantially parallel to the longitudinal axis of the device; and a transmission assembly interposed between the rotary actuator and the slide for transforming a rotary motion about a longitudinal rotation axis in a reciprocating linear motion of the slide along the scanning direction.
Abstract:
A measuring assembly for measuring the contour of a workpiece has a measuring probe that is pivotably supported and deflectable about a first axis (measuring axis) in order to contact a surface of the workpiece, and has a second axis that is associated with the workpiece. The first axis and the second axis are parallel or approximately parallel to one another for radially contacting a surface of the workpiece. A device for rotating the measuring probe and the workpiece relative to one another is provided, such that the measuring probe contacts the surface of the workpiece during the rotation, and a device for plotting the angular deflection of the measuring probe as a function of the particular rotational position of the workpiece relative to the measuring probe is provided.
Abstract:
A roundness measuring apparatus, which has a small space required for installation and of which measurement error due to a temperature change is small, is disclosed. The roundness measuring apparatus includes: a base; a turn-table which is fixed to the base and rotates a work placed on the turn-table; a two-dimensional moving mechanism provided at the base so as to move a holder holding part in parallel to a measurement plane including a rotation axis of the turn-table and a measuring point of the work; a detector holder attached to the holder holding part; and a detector attached to the detector holder so that a probe can be displaced on the measurement plane.
Abstract:
A method of placing a work piece on a measuring device in which a work piece is placed on a table of a measuring device is provided. The method includes: using a retainer capable of holding the work piece above the table and a lifting/lowering device lifting and lowering a top surface of the table; holding the work piece above the table with the retainer; lifting the top surface of the table with the lifting/lowering device to bring the top surface of the table into contact with a bottom surface of the work piece; and, after a load of the work piece is borne by the table, releasing the hold of the retainer on the work piece.
Abstract:
A straightness measuring instrument includes a base, two loading units, a center clamping apparatus, and a measure apparatus. The base includes two support rods and a sliding rod. The loading units are mounted on the base and are arranged along an axial direction of the support rods at intervals. The center clamping apparatus is mounted in the base and includes a fixed seat and a movable seat. The measure apparatus is mounted movably around the sliding rod. The loading units are adjustable for easy and quick movement depending on the length of a workpiece. Also, the center clamping apparatus can assist with clamping the workpiece that has different diameters.
Abstract:
A corrected ball diameter calculating method includes: preparing a reference gauge that has at least one reference peripheral surface of an outer peripheral surface and an inner peripheral surface; valuing of diameter values of the reference peripheral surface at a plurality of different height positions from a bottom surface of the reference gauge; calculating calibrated diameter values per each of the height positions; placing the reference gauge on the rotary table and causing the stylus tip to touch a plurality of measurement sites on the reference peripheral surface at each of the height positions to calculate measured diameter values that are diameter values of a circle passing through the neighborhood of center points of the stylus tip; and calculating the corrected ball diameters per each of the height positions from the calibrated diameter values and the measured diameter values that are calculated per each of the height positions.
Abstract:
The present disclosure relates to a machine tool, such as a grinding machine, and to a method for measuring a workpiece in a machine tool. The machine tool may comprise a workpiece mount (14), a tool unit (28), a measuring device (48) and a control device (56) that is connectable to the measuring device (48) and the tool unit (28), wherein the measuring device (48) is received at the tool unit (28) and comprises at least one toggle measurement head (66; 68), wherein the at least one toggle measurement head (66; 68) is received at a support piece (80) that provides a plurality of defined predetermined locations for the at least one toggle measurement head (66; 68), and wherein the control device (56) is arranged to detect signals that are triggered by the at least one toggle measurement head (66; 68) when touching a workpiece (96), and to determine on the basis of an actual location of the tool unit (28) an actual position of the at least one toggle measurement head (66; 68).