Abstract:
The present invention disclose a method for measuring a thermal expansion coefficient of a thin film, in which the thin film is first deposited on two substrates having different thermal expansion coefficients under the same conditions. For each of the two deposited substrates, a relationship between the thin film stresses and the measuring temperatures is established by using a phase shifting interferometry technique, in which the stresses in the thin films are derived by comparing the deflections of the substrates prior to and after the deposition. Based on the two relationships the thermal expansion coefficient, and elastic modulus, E f ( 1 - v f ) , can be calculated, wherein Ef and &ngr;f are the Young's modulus and Poisson's ratio of the thin film, respectively.
Abstract:
A light beam from a laser source is divided into two light beams at a half mirror, and the plane of polarization of one of the two divided light beams is rotated by 90 degrees at a half-wave plate so as to be orthogonal to that of the other of the two divided light beams. The two divided light beams are superimposed and introduced into a sample to be measured in anisotropy. After passing through the sample, the superimposed light beam is split at a polarized light beam splitter into the above two light beams, and the plane of polarization of the other of the two light beam is rotated by 90 degrees at a half-wave plate so as to correspond to that of the one of the two light beams. Then, the two light beams is superimposed again at a half mirror, and an interference pattern of the superimposed light beam is projected on a screen.
Abstract:
A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed; reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.
Abstract:
A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.
Abstract:
A birefringent bias is provided to an optical sensor by the addition of one or more single birefringent elements where the total birefringence-length product remains within the accepted tolerances of current devices. The bias provided by two or more elements is such that where each element has a birefringence, a dB/dT and a coefficient of thermal expansion term, the elements are arranged in tandem so that the combined birefringence terms equal the required birefringence bias and the dB/dT and coefficient of thermal expansion terms effectively cancel.
Abstract:
Method and apparatus for compensating a phototransducer system for fiber optic transmission losses and optical source power fluctuations includes generating a broadband source light beam having a plurality of spectral components. The source light beam is transmitted to a polarizer which polarizes the light beam and directs it to a multiple wave retardation device. The retardation device retards the spectral components of the polarized light beam. The retarded light beam is injected into a photoelastic transducer which modulates the polarizations of the retarded light beam in accordance with pressure applied to the transducer. Each spectral component of the retarded light beam will be modulated by the transducer. However, the broadband light beam will remain, in sum, relatively invariant to the applied pressure. The modulated light beam is then passed through an analyzer, injected into a fiber optic cable, and transmitted to a beam splitter. The beam splitter provides a first light beam to a photodetector which detects the light intensity of all spectral components, which intensity is only affected by transmission losses and power fluctuations within the system. A second portion of the split light beam is passed through a narrow passband filter which passes only certain portions of the spectral components which do vary with the applied pressure and transmission losses and power fluctuations. The filtered signal is detected by a second photodetector. The photodetectors provide electrical signals to a processor which outputs an electrical signal corresponding to a ratio of the first and second electrical signals.
Abstract:
A new method and device has been developed to determine experimentally the state and amount of birefringence along any arbitrary direction through a birefringent body. Such information can be used to determine the optical anisotropy of solid and liquid bodies, the residual and induced stress fields, etc. Essentially, this method and device separates, from the light scattered in all directions along an arbitrary path of laser light in a body, three sheets of light which are subsequently collimated; each of these light sheets contains parallel light rays carrying information of interest. The middle light sheet indicates the line of measurements, which is identical with the path or position of laser beam in a body. The two outer light sheets carry two complementary and independent pieces of information on the state and amount of birefringence along the line of measurements. Thus, both outer sheets of light can be used simultaneously to increase the reliability and accuracy of the birefringence measurements.
Abstract:
Certain materials (e.g. polymers, glasses) exhibit the photo-elastic effect, whereby when they are subject to stress become birefringent, which influences a light beam passing through the glass. This beam, e.g. from a laser is collimated and circularly polarized as it approaches the glass and is again polarized as it leaves the glass. This stress is applied, according to this invention, by magnetostrictive strips on the glass which are influenced, by the magnetic field to be measured or the AC bias field. A miniaturized arrangement using this principle is described.
Abstract:
An apparatus used directly on a flat sheet of transparent material, especially tempered glass, for simultaneous measurement of sign and amplitude of stress across the section of said glass sheet using scattered light. The apparatus allows reliable and repetitive measurements independently of the operator's subjective observations, since the data is read through an automatic system. The apparatus has a Helium-Neon (He-Ne) laser source of 1 to 5 mW, whose light beam is linearly polarized, then modulated with a series of wave plates (2,2', 2"), then passed through a collimator (3) and subsequently made to strike a prism (4) optically coupled with the glass sheet (V) being tested. Variation in intensity of the interference fringes is revealed by a TV camera (5) having a macrophotographic lens system (5') which focusses the scattered light on a solid-state array photodetector (5'). The photosensitive zone of the detector is positioned to detect intensity of the scattered light along path (BC) of the laser beam through the section of the glass sheet (V). An electronic circuit can thus convert the video signals transmitted by TV camera ( 5).
Abstract:
A variable coupler fiberoptic sensor in which a fused, tapered, biconical directional fiberoptic coupler is encapsulated in a stress birefringent medium whose index of refraction changes with applied stress.The ratio of power in the output fibers of the directional coupler varies with the change of index of refraction of the encapsulating medium as stress is applied to the medium.