Abstract:
In general, the present disclosure is directed toward a novel hybrid spintronic device for converting chemical absorption into a change in magnetoresistance. This device uses a novel magnetic material which depends on the attachment of an organic structure to a metallic film for its magnetism. Changes in the chemical environment lead to absorption on the surface of this organometallic bilayer and thus modify its magnetic properties. The change in magnetic properties, in turn, leads to a change in the resistance of a magnetoresistive structure or a spin transistor structure, allowing a standard electrical detection of the chemical change in the sensor surface.
Abstract:
An analyte test sensor for use in measuring the concentration of a particular analyte in a test sample includes a non-conductive substrate, a reference electrode deposited on the substrate, a working electrode deposited on the substrate and a compensation electrode deposited on the substrate. The compensation electrode is provided with a resistive ladder and is designed to correct for test result inaccuracies which are the result of variances in the manufacturing of the test sensor. Specifically, in one embodiment, the compensation electrode corrects for test result inaccuracies in an analog manner by shunting a portion of the working current away from working electrode. In another embodiment, the compensation electrode corrects for test result inaccuracies in a digital manner by providing a calibration code which is proportional its resistance value. A batch of analyte test sensors are preferably manufactured in the following manner. An initial batch of the test sensors is constructed. Then, a limited sampling of the sensors is tested for accuracy using a control sample. Based on the test results, the resistance value of the compensation electrode for each remaining sensor in the batch is adjusted accordingly.
Abstract:
The present invention describes a replaceable breath alcohol sensor module that can be replaced with a new pre-calibrated breath alcohol sensor module or re-calibrated. The breath alcohol sensor module requiring calibration can be removed from the body of a Breath Alcohol Testing Device (commonly called “breathalyser” or “breathalyzer”). The breath alcohol sensor module can be separately calibrated for accurate calculation of “percent blood alcohol concentration” (% BAC) based on breath air samples and then re-installed into the breath alcohol tester or the old breath alcohol sensor module can be replaced with a new pre-calibrated breath alcohol sensor module. The present invention improves upon and/or replacing the current method of re-calibration at a breathalyzer service center.
Abstract:
A long-life conductivity sensor system and method that is embeddable or immersible in a medium. The conductivity sensor system includes at least a housing with an enclosing wall that defines an interior volume and that has at least one aperture through the wall; a pair of electrodes protruding through the aperture into a medium surrounding the sensor housing; and conductivity sensing electronics contained within the sensor housing interior volume and connected to the pair of electrodes. The conductivity sensing electronics include a galvanostat connected to the electrodes for inducing discrete constant current pulses between the electrodes creating a transient voltage signal between the electrodes; and a high-speed voltmeter/A-D Converter connected to the electrodes for measuring the transient voltage signal between the electrodes, the transient voltage signal being a function of the conductivity of the medium surrounding the sensor housing.
Abstract:
Improved roadway freezing point monitoring systems and methods include improved sample wells for the accurate measurement of the freezing point of liquid on a roadway, the use of temperature sensors that require only two conductors to receive power and to send and receive digital address and temperature information, improved algorithms for detecting the freeze point of liquid on the roadway, the use of conductivity measurements to verify detected freeze points, and the transmission of temperature information via the Internet to remote computers.
Abstract:
A salt sensor is disclosed which is portable and easily handled by a person at a restaurant or in his home for determining the sodium content of the food or beverage he is about to consume. The salt sensor includes a uniquely designed contact top which is electronically connected to a circuit which generates an AC signal. The strength of the signal transmitted across the contact tips is directly proportional to the conductivity of the food or beverage being tested and is, accordingly, registered on a display panel located on the body of the salt sensor.
Abstract:
A method for the determination of the setting process in an inorganic aqueous binder system, in that the electrical conductivity is constantly measured in the binder system, in that the variation of the electrical conductivity is differentiated according to time, in that the variation of the first derivative of the conductivity is monitored, and in that the temperature in the binder system is continously measured and the temperature dependence of the electrical conductivity is eliminated by means of the measured temperature values.
Abstract:
A device for detecting cation saturation in an ion exchange filter includes electrodes disposed in an interchanging resin. One of the electrodes receives power from a source of supply, while the other electrode picks up a cation potential signal and through a tracking circuit comprising an operational system informs a comparator circuit having a fixed threshold valve which operates depending on the value emitted by the tracking circuit, activating a luminous and/or acoustic alarm system, all of which is optatively activated by means of a manually operated push-button.
Abstract:
A thermal runaway detection system includes: a venting device including a sealing body in a venting passage and a thermal runaway detection circuit. The sealing body being configured to close the venting passage in a first position and to open the venting passage in a second position different from the first position. The thermal runaway detection circuit being configured to monitor a position of the sealing body and to output a signal corresponding to the position of the sealing body.
Abstract:
A fluid sensor for sensing a concentration or composition of a fluid, the sensor comprising a first temperature sensing element located on or within a first dielectric membrane and a second temperature sensing element located on or within a second dielectric membrane. An output circuit is configured to measure a differential signal between the first temperature sensing element and the second temperature sensing element. The fluid sensor comprises a first region configured to be exposed to the fluid, and a second region configured to be isolated from the fluid, where the first dielectric membrane is located in the first region, such that in use, the first dielectric membrane is exposed to the fluid, and wherein the second dielectric membrane is located in the second region such that in use, the second dielectric membrane is isolated from the fluid.