Abstract:
A system for providing aggregate-rate communication services is provided. The system comprises a provider network, having an arbitrary topology; a plurality of customers; and a plurality of port nodes, comprising at least one aggregation-group. Port nodes in the at least one aggregation-group share capacity of the at least one aggregation-group fairly. Each of the plurality of customers is associated with at least one of the plurality of port nodes to access the provider network.
Abstract:
Methods and apparatuses allowing for dynamic partitioning of a network resource among a plurality of users. In one embodiment, the invention involves recognizing new users of a network resource; creating user partitions on demand for new users, wherein the user partition is operable to allocate a portion of a network resource; and, reclaiming inactive user partitions for subsequent new users.
Abstract:
A router is operatively coupled to a plurality of local computers and has one or more connections to a remote computer network for managing one or more data routes between the local computers and the remote computer network. In providing dynamic access to the remote computer network by any of the local computers, one or more of the connection(s) of the router to the remote computer network includes one or more wireless connections independent of the router between the local computers and the remote computer network.
Abstract:
A functionality and method for determining aggregate data transit bandwidth requirements for the nodes of an Ethernet ring network for traffic management and to improve the operation, efficiency, and Quality of Service. An aggregate bandwidth database is produced, based on a priori knowledge of the ring network, including topology, path utilization, bandwidth sharing, and failure protection scenarios. Aggregate bandwidth requirements are determined independent of the actual real-time data traffic rates, and without requiring any actual real-time data traffic rate information. Aggregate bandwidth is automatically determined upon configuration or reconfiguration of the ring network.
Abstract:
Network resources are assigned as dedicated, shared, or public network resources. The resources are then allocated to L1-VPN subscribers on demand. Splitting assignment of the resources from allocation of the resources enables resources to be assigned to more than one subscriber on the network. Temporary physical dedication of the resources to one of the subscribers may be accomplished by allocating the assigned resources on demand, so that particular subscribers are provided with dedicated resources on an as-needed basis. Dedication of the network resources allows the network resources to be configured, managed, and controlled by the customers. The network resources may be optical resources and the links may be time slots on particular fibers. Optionally, by enabling prioritization to cause displacement of link allocations, additional flexibility may be obtained in allocating links to L1-VPNs such as by allowing the use of private and shared resources by other subscribers.
Abstract:
Various embodiments provide a two-way interface between a URC driver (URCD) and various Protocol Adaption Layer (PAL) drivers. The two-way interface can enable bandwidth to be shared and managed among multiple different PALs. The two-way interface can also be used to implement common radio functionality such as beaconing, channel selection, and address conflict resolution. In at least some embodiments, the two-way interface can be utilized for power management to place PALs in lower power states to conserve power and to support remote wake-up functionality. Further, at least some embodiments can enable vendor-specific PALs to interact with vendor-specific hardware.
Abstract:
A logical quality-of-service management method for peer-to-peer networks uses a special group service for QoS management within peer-groups. This group service determines and assigns a budget per time unit for each peer. Such time unit may be in the range of milliseconds or few seconds. It may also determine a group budget for the peer-group. While a peer uses bandwidth, i.e. while it sends or receives data, its budget is decreased. When a peer has exhausted its budget, it has to lower its priority for transferring or receiving data. Each peer is responsible for keeping its own budget. If a peer does not keep the conditions, other peers may have the right to deny the data transfer from that peer. The QoS service function is advertised in peer-group advertisement messages.
Abstract:
A supervisory communications node monitors and controls communications with a plurality of remote devices throughout a widely distributed network. A method is provided to convey and maintain information used to synchronize the packetization and burst operations within the network. During session setup, jitter constraints indirectly are used to explicitly communicate a synchronization timing reference. The timing reference is set at the beginning of a phase/period boundary used to service the session. In an embodiment, the announcement of the first grant is used as an explicit indication of the synchronization timing reference value. In another embodiment, the synchronization timing reference value is inferred if a remote device receives contiguous voice grants meeting certain conditions. In an embodiment implementing periodic scheduling, the actual arrival of the first grant is used to infer the synchronization timing reference value. In an embodiment, the present invention enables the synchronization timing reference value and/or the periodicity to be modified if network conditions indicate that packetization and burst operations are out-of-synchronization.
Abstract:
Proper allocation of network bandwidth is a crucial issue in rendering certain performance guarantees to meet the growing customer demands. Hence, allocation methodologies must explicitly be carried out for these guarantees to be given as efficiently as possible since the shared resources are limited. This invention presents methods and systems for Dynamic Bandwidth Management (DBM) and Quality of Service (QoS) in packet-based networks. DBM is an algorithm that dynamically adjusts the resource allocation in the IP Access Networks based upon measured QoS at the IP Core Network through an implementation of a Feedback Control Mechanism to manage available core transport bandwidth. Such a Feedback Control Mechanism is capable of maintaining a condition of non-congestion, a sufficient and necessary condition to meet end-to-end QoS requirements in a Next Generation Network (NGN). The emphasis is given on the system implementation of QoS policies for the fair distribution of network resources through a scalable architecture comprising key Resource and Admission Control Functional (RACF) entities, namely: a Network Management System (NMS), a QoS Manager, an Access Controller Manager (ACM), the Access Controllers, and the active probes.