Abstract:
A line scan camera comprises a printed circuit board upon which a charge-coupled device (CCD) is mounted. A lens component is fixed within a lens mount, and the base of the lens mount is adjustably mounted upon an optical bench. Calibration devices adjustably interconnect the lens mount to the printed circuit board and to the optical bench so as to calibrate the positional location of the lens component relative to the charge-coupled device (CCD) and to an object plane past which objects to be scanned and photographed are conveyed. In this manner, the focus distance defined between the lens component and the charge-coupled device (CCD) as well as the focal distance defined between the lens component and the object plane are fixed and do not need any further calibration. The object plane is defined upon the front surface of a sealed housing enclosure and all of the components are disposed within the housing enclosure so as to prevent dust and contaminants from collecting upon the optical components. LED arrays are disposed within the front of the housing so as to illuminate and properly expose the objects conveyed past the object plane. A positive pressure differential is also created within the sealed housing enclosure so as to prevent the ingress of dust and contaminants into the housing enclosure.
Abstract:
An integrated image module for a document scanner includes a one piece die cast housing having a datum element and a support element. An imaging sensor array is enclosed in the housing. An array bias element urges the imaging sensor array against the datum element to provide accurate placement of the sensor array relative to the housing. A transport mechanism is attached to the housing so that the position of the transport mechanism accurately corresponds to the position of the imaging sensor array. The lens and the lamp for illumination are also attached to the housing so that the primary components of the imaging portion of the scanner are contained in a single module.
Abstract:
An image reading apparatus includes a housing provided with a light passage, a transparent plate mounted on the housing, a light source for emitting light into the light passage, a lens array facing the image reading section on the transparent plate, a plurality of light-receiving elements arranged in an array extending in a primary scanning direction, and a light reflector formed on the transparent plate. The light reflector is offset from the image reading section in the secondary scanning direction, which is perpendicular to the primary scanning direction.
Abstract:
A mounting method and a mounting structure for the solid-state image pickup element in the image reading-out apparatus aiming at assembling the element with high precision and eliminating positional deviation occurring thereafter. The mounting structure comprises a solid-state image pickup element fixing member having a focusing lens fixed thereon, a basic board having the element mounted thereon, and a solid-state image pickup element supporting member from which the basic board can be detached. Between the fixing member and the supporting member are provided connecting portions, and the supporting member is bonded to the fixing member by filling the gap between the connecting portions with the adhesive agent. The connecting portions are constructed with the projection part provided on the fixing member and the hole part provided on the supporting member or vice versa.
Abstract:
An image sensor has a case, a glass cover attached to its upper surface, a head plate carrying a plurality of image sensor chips, a plurality of light-emitting elements for illuminating a document placed on the glass cover and a rod lens array for focusing the reflected light from the document on the image sensor chips, and a light-conducting member which is placed inside the case for effectively directing the light from the light-emitting elements to a specified area of the glass cover. The upper surface of the rod lens array at both its ends is compressed by compressing members formed at both end parts of the light-conducting member. The rod lens array is inserted from above into a holder having a groove formed inside the case. The holder may have protrusions formed for engaging with an edge on the upper surface of the rod lens array approximately in the middle in the longitudinal direction for easy attachment.
Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.
Abstract:
An image sensor includes: a lens configured to focus light irradiated toward an object to be read and reflected by the object to be read; a sensor configured to receive light focused by the lens; a sensor board configured to mount thereon the sensor; a board retaining plate, having a casing attachment surface extending in the X direction and a sensor board attachment reference surface that is in contact with the +Y side of the sensor board and is formed in a side surface of the casing attachment surface, and configured to retain the sensor board; and a first casing configured to fix or retain the board retaining plate by fastening of a surface of the casing attachment surface.
Abstract:
A light guide body that extends in a rod shape and guides light incident from an end surface thereof to emit the light from a circumferential surface thereof, the light guide body having a shape such that according to an angle of a circumferential direction around the light guide body, an amount of emitting light in a direction of the angle is different. Additionally, a static elimination device and an image forming apparatus include the light guide body.
Abstract:
An image reading apparatus includes: a contact glass provided at an upper surface of a main body of the apparatus to set a manuscript thereon, an image sensor being positioned below the contact glass and having a reading surface on contact glass side for reading an image from the manuscript on the contact glass, a carriage supporting the image sensor accommodated in a sensor container formed to have a recess open to the contact glass side, a rail member slidably supporting the carriage, and a biasing member biasing the image sensor to the contact glass side via a biased portion adjacent to the reading surface of the image sensor. An upper end of the biasing member is positioned below the contact glass and above the lower surface of the image sensor.
Abstract:
An image reading apparatus includes: a contact glass provided at an upper surface of a main body of the apparatus to set a manuscript thereon, an image sensor being positioned below the contact glass and having a reading surface on contact glass side for reading an image from the manuscript on the contact glass, a carriage supporting the image sensor accommodated in a sensor container formed to have a recess open to the contact glass side, a rail member slidably supporting the carriage, and a biasing member biasing the image sensor to the contact glass side via a biased portion adjacent to the reading surface of the image sensor. An upper end of the biasing member is positioned below the contact glass and above the lower surface of the image sensor.