Abstract:
An optical scanning apparatus provides improved image quality by changing the amount of writing scale compensation for a pixel clock during a scanning cycle. A pixel clock generation unit of the optical scanning apparatus divides the scanning cycle into multiple division periods. A phase change of the pixel clock is carried out for each of the division periods. The phase change can also be different from scanning cycle to scanning cycle.
Abstract:
To make it possible to improve a printing speed.When printing a plurality of printing sheets 14, it is possible to decrease the time for generating correction data by using a pair of correction data values to print the printing sheets 14. Therefore, it is possible to decrease the time for printing each printing sheet 14 even compared to the case of a method for generating correction data for each printing sheet 14. As a result, even when the number of sheets to be printed is large, it is possible to improve a printing speed. Moreover, when meandering states of the printing sheet 14 are changed, it is possible to prevent disorder of a printed image due to meandering of the printing sheet 14 for a long time by newly generating correction data. Furthermore, by generating (updating) only a part of correction data when newly generating the correction data, it is possible to decrease the time for generating the correction data and improve a printing speed.
Abstract:
A registration unit includes a skew correction roller pair configured to rotate a sheet conveyed from a conveyance roller pair and to correct skew of the sheet. The registration unit sheet further includes a projectable swinging guide arranged between the conveyance roller pair and the skew correction roller pair to deflect the sheet. The skew correction roller pair corrects the skew of the sheet deflected by the swinging guide.
Abstract:
An optical scanning device and method of optical scanning are provided. The optical scanning unit includes a resonant mirror controller scanning light emitted from a laser diode on a photoconductive drum, a first receive light sensor which receives the light scanned by the resonant mirror controller, and outputs a first horizontal synchronization signal which determines a start position of optical scanning according to the received light, and a video signal controller, responding to the first horizontal synchronization signal output from the first receive light sensor, controls the laser diode so that light corresponding to a video signal is emitted. In the optical scanning unit, a video signal controller can receive a plurality of horizontal synchronization signals (SOS; Start of Scan) through only one input pin irrespective of the number of receive light sensors which generate horizontal synchronization signals (SOS; Start Of Scan), which correspond to a start position of optical scanning.
Abstract:
A laser scanning apparatus includes: a plurality of laser light sources including a first laser light source and a second laser light source; a scanner for scanning laser lights emitted from the plurality of laser light sources in a main scanning direction; a light receiving sensor for receiving the laser lights deflected and scanned by the scanner; and a signal generation unit for generating a first signal which is in synchronization with a pixel clock for the second laser light source based on an output from the light receiving sensor obtained by a laser light emitted from the first laser light source, and for generating a second signal which is in synchronization with a pixel clock for the first laser light source based on an output from the light receiving sensor obtained by a laser light emitted from the second laser light source.
Abstract:
Measuring a feed spindle length change in a printing exposer, having at least one exposure head on a carrier moved axially along the drum in a feed direction by a stepping motor and the spindle, carries out the measurement by determining the number of stepping motor cycles needed by the carrier to travel through a reference section parallel to the feed direction. During calibration, an optimum number of cycles per revolution of the exposure drum is set, and the number of cycles needed to travel through the reference section is determined. During an operating phase, the number of cycles needed to travel through the reference section is determined and a corrected number of cycles per revolution of the exposure drum is determined in accordance with the relationship Kk=K0×Mx/M0. The temperature of the components involved in the measurement is kept constant with a temperature control system.
Abstract translation:测量打印曝光器中的进给主轴长度变化,具有至少一个在步进马达和主轴沿进给方向沿滚筒轴向移动的曝光头,通过确定所需的步进马达循环次数来执行测量 由载体行进通过平行于进给方向的参考部分。 在校准期间,设置曝光鼓每转的最佳循环次数,并且确定行进通过参考部分所需的循环次数。 在操作阶段期间,确定行进通过参考部分所需的循环次数,并且根据关系K< k> =< SUB>确定曝光鼓的每转循环次数 > 0 SUB> x SUB> x / M 0 0。 使用温度控制系统测量所涉及的部件的温度保持恒定。
Abstract:
System and method for hand-held printing. The method can include detecting a direction of initial movement of the hand-held printer. The method can include establishing a mode of operation including either a left-justified mode when the direction of initial movement is left to right or a right-justified mode when the direction of initial movement is right to left. The method can include maintaining the mode of operation for an entire print job.
Abstract:
An image forming apparatus includes a light source, a deflector, beam detectors, a clock generator, a measurement mechanism, a frequency corrector, and a phase corrector. The light source illuminates in response to image data. The deflector deflects an optical beam into a scanning beam. The beam detectors including first and second beam detectors detect the scanning beam. The clock generator generates writing clock signals. The measurement mechanism measures a count number of the writing clock signals generated during a period between the scanning beam is detected by the first and second beam detectors. The frequency corrector corrects a frequency of the writing clock signals such that the count number measured becomes substantially equivalent to a predetermined number. The phase corrector varies a phase of the writing clock signals such that the count number is substantially constant before and after the phase of the writing clock signals is varied.
Abstract:
An optical beam scanner includes a driving unit rotating a rotary polygon mirror that deflects and scans an optical beam; a rotation position detection unit; a rotation control unit controlling the driving unit in accordance with a rotation reference signal and an output signal of the rotation position detection unit; an optical beam detection unit detecting the optical beam at a predetermined position on a scanning path so as to generate a horizontal synchronizing signal; a first timing generation unit generating a first reference timing so as to print a first surface; a second timing generation unit generating a second reference timing so as to print a second surface; a timing measurement unit measuring a counter value according to the horizontal synchronizing signal; and a phase control unit controlling a phase of the rotation reference signal in accordance with the counter value obtained by the timing measurement unit.
Abstract:
An image-forming apparatus is disclosed that includes at least one imaging optical system forming an electrostatic latent image on the scanning surface of a medium moving in a sub scanning direction by scanning the scanning surface in a main scanning direction by periodically deflecting a laser beam with a rotary deflector, a pixel clock generation part generating a pixel clock signal for controlling the emission timing of the laser beam and changing the phase of the pixel clock signal, a region setting part setting the length of each of multiple regions based on image writing magnifications in a line in the main scanning direction, the regions being formed by dividing part of the scanning surface corresponding to the line in the main scanning direction, and a phase control part controlling the changing of the phase of the pixel clock signal region by region based on the image writing magnifications.