Apparatus for Early Detection of Cardiac Amyloidosis

    公开(公告)号:US20220386928A1

    公开(公告)日:2022-12-08

    申请号:US17828937

    申请日:2022-05-31

    Inventor: Reynolds Delgado

    Abstract: An improved wearable device for detecting progression of Cardiac Amyloidosis based on changes in relative values of characteristics of P-wave and R-wave is disclosed. In an embodiment of the invention, two electrodes the device are connected to user's skin surface to obtain traces of ECG signals. Thereafter, correction factors are determined for the obtained traces of ECG signals. A microprocessor included in the device applies correction factors on the traces of ECG signals to obtain characteristics of P-wave and R-wave. Finally, the microprocessor determines the ratio of the characteristics (such as amplitude) of the P-wave to the characteristics (such as amplitude) of the R-wave and records said ratio. Still further, the microprocessor compares all such recorded ratios or features, to determine and display if there is disease progression.

    Biosignal-Based Intracardiac Navigation Systems, Devices, Components and Methods

    公开(公告)号:US20220386924A1

    公开(公告)日:2022-12-08

    申请号:US17863246

    申请日:2022-07-12

    Applicant: Ablacon Inc.

    Abstract: In some embodiments, there are provided systems, devices, components, and corresponding methods configured to permit navigation and or positioning of an intra-cardiac electrophysiological (EP) mapping basket of an EP mapping catheter inside or near an atrium or other heart chamber of a patient's heart using biosignals or intra-cardiac signals. In one embodiment, QRS complexes are extracted or isolated from intra-cardiac signals sensed by electrodes mounted on the EP mapping basket. Using the QRS complexes, one or more computing devices then determine the locations of the electrodes inside or near the patient's atrium that are associated with each isolated or extracted QRS complex. The one or more computing devices can also be used to determine changes in the three-dimensional locations and orientations of the basket and the electrodes thereof as the basket is moved around, in, or near the patient's atrium, heart chamber, or other portion of the patient's heart. The computing device can also be configured to use position change detection methods to detect basket catheter movements inside or near the patient's heart, determine the three-dimensional coordinates X of each electrode for a given position and orientation of the basket within the patient's heart, determine and display to a user multiple positions of the basket inside or near the patient's heart, and provide a visual display to a user of the locations of the electrodes and/or basket inside or near the patient's heart.

    System and method of marking cardiac time intervals from the heart valve signals

    公开(公告)号:US11490849B2

    公开(公告)日:2022-11-08

    申请号:US16741740

    申请日:2020-01-13

    Abstract: A system for marking cardiac time intervals from heart valve signals includes a non-invasive sensor unit for capturing electrical signals and composite vibration objects, a memory containing computer instructions, and one or more processors coupled to the memory. The one or more processors causes the one or more processors to perform operations including separating a plurality of individual heart vibration events into heart valve signals from the composite vibration objects, and marking cardiac time interval from the heart valve signals by detecting individual heartbeats using at least one or more of a PCA algorithm or deep learning.

    Medical system for mapping of action potential data

    公开(公告)号:US11471114B2

    公开(公告)日:2022-10-18

    申请号:US16071387

    申请日:2016-01-19

    Applicant: Ablacon Inc.

    Abstract: The present invention concerns a Medical system tor mapping of action potential data comprising an elongated medical mapping device (1) suitable for intravascular insertion having an electrode assembly (80) located at a distal portion (3) of the mapping device (1), a data processing and control unit (15) for processing data received from the mapping device (1), the data processing and control unit including a model generator for visualizing a 3-dimensional heart model based on one of electrical navigation system, MRI or CT scan data of a heart, a data output unit (16) for displaying both the 3-dimensional heart model and the processed data of the mapping device (1) simultaneously in a single visualization, wherein the model generator is configured to structure 3D scan data of the heart into 6 directions (a, b, c, d, e or f) of a cube, each direction is associated with a separate Cartesian coordinate system with X(a, b, c, d, e or f), Y(a, b, c, d, e or f), Z(a, b, c, d, e or f) coordinates, wherein for assigning each 3D scan data point to one of the 6 directions (a, b, c, d, e or f) the following 6 true or false tests are applied: Formula (I), wherein max indicates the maximum leg length of the respective X, Y or Z axis and wherein mes indicates the measured value of a scanned data point, and wherein the data point is assigned to the direction (a, b, c, d, e or f) for which the test outcome is true.

Patent Agency Ranking