摘要:
A method of arranging detector modules within a gamma ray detector apparatus, each detector module including an array of scintillation crystals to convert light into electrical signals, the light being generated in response to incident gamma rays generated by an annihilation event, the method including obtaining performance information of each of the detector modules, and determining a relative location for each of the detector modules within the gamma ray detector based on the obtained performance information of the detector modules.
摘要:
A cross-sectional area calculation section calculates a cross-sectional area of a subject as physical quantity with respect to a size of the subject, and an NEC calculation section calculates a noise equivalent count NEC as physical quantity for evaluating an image. The C-NEC calculation section calculates a noise equivalent count per unit area C-NEC as physical quantity for evaluating an image as per size of the subject in accordance with the cross-sectional area of the subject calculated in the cross-sectional area calculation section and the noise equivalent count NEC calculated in the NEC calculation section. Accordingly, the noise equivalent count per unit area C-NEC is calculated as noted above, whereby an index may be determined that is independent of the cross-sectional area of the subject in evaluating the image.
摘要:
A device (1) for use in imaging a subject using both light and gamma rays emanating from the subject, the device including: a first sensor means (2) responsive to light received thereby from the subject to generate first signals (6) for use in forming a first image (10) of the subject; a second sensor means (3) responsive to gamma rays received thereby from the subject to generate second signals (7) for use in forming a second image (11) of the subject and arranged to receive gamma rays from the subject which have passed from the subject through the first sensor means before reaching the second sensor means.
摘要:
The invention is an imaging apparatus comprising a detector device (12) for determining points of incidence of photons and having an impact surface (13), and an aperture (16) suitable for projecting the photons to the detector device (12) having an inlet surface (17) and an outlet surface facing the impact surface (13), and comprising pinholes (18′, 18″, 22) connecting the inlet surface (17) and the outlet surface. The pinholes (18′, 18″, 22) comprise one or more central pinholes (18′, 22) and one or more peripheral pinholes (18″), and at least one central pinhole (18′, 22) and at least one peripheral pinhole (18″) are formed with focal opening (20′, 20″, 23) depth or focal opening (20′, 20″, 23) sizes different from each other. Furthermore, the invention is an aperture for the imaging apparatus and a method of manufacturing an aperture of an imaging apparatus.
摘要:
A system for calculating a position of a radioactivity emitting source in a system-of-coordinates, the system comprising (a) a radioactive emission detector; (b) a position tracking system being connected to and/or communicating with the radioactive emission detector; and (c) a data processor being designed and configured for receiving data inputs from the position tracking system and from the radioactive emission detector and for calculating the position of the radioactivity emitting source in the system-of-coordinates.
摘要:
The invention provides a switchable photomultiplier switchable between a detecting state and a non-detecting state including a cathode upon which incident radiation is arranged to impinge. The photomultiplier also includes a series of dynodes arranged to amplify a current created at the cathode upon detection of photoradiation. The invention also provides a detection system arranged to detect radiation-emitting material in an object. The system includes a detector switchable between a detecting state in which the detector is arranged to detect radiation and a non-detecting state in which the detector is arranged to not detect radiation. The system further includes a controller arranged to control switching of the detector between the states such that the detector is switched to the non-detecting state while an external radiation source is irradiating the object.
摘要:
Provided is radiation detection equipment including: a semiconductor radiation detector which has a semiconductor crystal made of thallium bromide; a capacitor which applies a voltage to the semiconductor radiation detector; and at least one DC power source which accumulates positive charges and negative charges in either of electrodes of the capacitor. Herein, a cathode and an anode in the semiconductor radiation detector are formed of at least one kind of a metal selected from gold, platinum and palladium. Further, the DC power source periodically reverses a voltage of accumulating the positive charges and a voltage of accumulating the negative charges in either of the electrodes of the capacitor per interval shorter than 10 min, thereby to apply the resulting voltage thereto.
摘要:
Radiation tomography apparatus of this invention has a shield that shields entering of radiation flying from outside of the gantry. The shield is formed of shielding pieces. Consequently, there is no need for manufacturing the shield in a large and expensive furnace. Accordingly, the radiation tomography apparatus may be provided that is easily manufactured and achieves suppressed cost. Moreover, with the radiation tomography apparatus of this invention, maintenance may be performed through removal of the shielding pieces without removing the entire shield.
摘要:
Systems and methods for providing improved detectors for use in SPECT cameras. The improved detectors use pinhole apertures and surfaces calculated to provide improved sensitivity and resolution. In some embodiments, the detectors have non-planar surfaces. In some embodiments, the surfaces are spherical, conical, parabolic, or other non-planar forms.
摘要:
Apparatus and methods for determining a boundary of an object for positron emission tomography (PET) scatter correction are provided. One method includes obtaining positron emission tomography (PET) data and computed tomography (CT) data for an object. The PET data and CT data is acquired from an imaging system. The method further includes determining a PET data boundary of the object based on the PET data and determining a CT data boundary of the object based on the CT data. The method further includes determining a combined boundary for PET scatter correction. The combined boundary encompasses the PET data boundary and the CT data boundary.