Abstract:
Disclosed is a relocation detector mounted on an apparatus and configured to detect relocation of the apparatus and limit functions of the apparatus. The relocation detector includes a vibration power generation unit configured to convert a vibration to electrical energy. The relocation of the apparatus is detected by the electrical energy from the vibration power generation unit, which serves as a power source for the relocation detector, generated by the vibration of the apparatus.
Abstract:
Presented are systems and methods for deploying wireless data acquisition modules that facilitate autonomous initialization. The wireless data acquisition modules may initiate a initialization process in response to a stimulus associated with being deployed. The wireless data acquisition module may further conduct a neighbor discovery process and in turn establish a data transfer path among one or more other wireless data acquisition modules. Further, information obtained during a series of autonomous tests may be communicated during the neighbor discovery process and the establishment of the data transfer path may at least in part be based on the information obtained in the autonomous tests.
Abstract:
Disclosed is a system for surveying the structure beneath the seabed using a sub-bottom profiler. The system can include a survey vessel and a sub-bottom profiler mounted to travel with the survey vessel. The sub-bottom profiler can comprise a transmitter for transmitting pulses at a predetermined period between pulses towards the seabed, and a first receiver and a second receiver for receiving reflections from the seabed of each transmitted pulse. The system can also include that the transmitter and the first and second receivers are mounted along an axis in the direction of travel of the survey vessel and the transmitter is disposed between the first and second receivers and spaced from each of them by a predetermined separation.
Abstract:
Method and apparatus for mitigating vibrations in a device towed in water. The apparatus includes one or more tuned elastic sections having a complex spring rate and adapted to attenuate vibrations in a specified frequency range; and a head end coupler adapted to couple the apparatus for vibration mitigation to a component of an electro-mechanical cable or a tow assembly. One of the one or more tuned elastic sections is coupled to the head end coupler with a high impedance material interface.
Abstract:
A vibration detector (100) is disclosed herein. In a first embodiment, the vibration detector (100) includes a support member (300, 302) arranged to vibrate, and a sensor (207) arranged to detect a vibration frequency of the support member (300, 302). The vibration frequency to be detected is dependent on the support member's mechanical structure, in which the support member's mechanical structure is mechanically reconfigurable to vary the vibration frequency to be detected by the sensor (207).
Abstract:
A folded pendulum is described. The folded pendulum can be a monolithic pendulum and is positioned in the vertical configuration. The folded pendulum allows for more compact realizations through high decouplings of a vertical degree of freedom from other degrees of freedom as well as optimal mechanical quality factors.
Abstract:
A method includes enabling a power supply of a ground sensor device to provide power to one or more components of the ground sensor device based on one or more rotations of a rotor of the ground sensor device.
Abstract:
Disclosed herein are implementations of various technologies for a method for estimating porosity or permeability in a region of interest. The method may receive chemical measurements for the region of interest. The chemical measurements may include an amount of silicon, aluminum, potassium and iron in the region of interest. The method may determine an amount of biogenic silica in the region of interest using the chemical measurements. The method may determine grain density of the region of interest based on the amount of biogenic silica. The method may determine the porosity or permeability in the region of interest based on the grain density.
Abstract:
Presented are systems and methods for deploying wireless data acquisition modules that facilitate autonomous initialization. The wireless data acquisition modules may initiate a initialization process in response to a stimulus associated with being deployed. The wireless data acquisition module may further conduct a neighbor discovery process and in turn establish a data transfer path among one or more other wireless data acquisition modules. Further, information obtained during a series of autonomous tests may be communicated during the neighbor discovery process and the establishment of the data transfer path may at least in part be based on the information obtained in the autonomous tests.