Abstract:
A bearing holder and a spindle motor having the same are disclosed. The bearing holder in accordance with an embodiment of the present invention can include a body, which has an insertion hole formed therein such that a bearing is inserted into the insertion hole, a first supporting protrusion, which is protruded downward from a bottom surface of the body along a circumference of the insertion hole, and a first bent indentation, which is formed on an inner circumferential surface of the first supporting protrusion such that the first supporting protrusion is bent toward an inner side. Thus, unnecessary deformation in the bearing holder can be prevented while the bearing holder is coupled to a base plate. Moreover, since the bearing holder forms an accurate positional relationship with respect to the base plate, noise and vibration can be prevented from occurring during the operation of the motor.
Abstract:
In a motor, a bearing housing is made of a thermoplastic resin material. A bottom portion of the bearing housing includes a first large diameter portion, a small diameter portion, and a second large diameter portion. The first large diameter portion of the bearing housing is arranged on an upper surface of the base. An outer circumferential surface of the small diameter portion of the bearing housing is arranged radially opposite a side peripheral surface of a base hole. The second large diameter portion is arranged to be in direct contact with a lower surface of the base through caulking.
Abstract:
A spindle motor is disclosed. The spindle motor includes a rotation shaft; a bearing rotatedly supporting the rotation shaft inserted therein; a bearing housing supporting the bearing and coupled to a stator; and a base plate coupled to the bearing housing, wherein the base plate has a reverse burring part projected from an upper part of the base plate along the outer surface of the bearing housing and burred from the upper surface of the bearing housing towards the lower surface opposite to the upper surface to support the outer surface of the bearing housing.
Abstract:
A hydrodynamic type oil-impregnated sintered bearing includes a porous bearing body of sintered metal having a bearing surface in which hydrodynamic pressure generating grooves slating against an axial direction are provided. Lubricating oil or the base oil of lubricating grease to be impregnated into the bearing body is selected from among (a) mixtures of poly-α-olefin or hydrogenated compound thereof and ester and (b) ester. The ester is preferably polyol ester. In the cases of the lubricating grease, the thickener of the lubricating grease is preferably composed of urea compound. A plurality of bearing surfaces may be formed on the inner periphery of the bearing body so as to be separated from one another. The hydrodynamic type oil-impregnated sintered bearing may be suitably applied to a spindle motor for information equipment.
Abstract:
A spindle motor is disclosed, wherein the spindle motor includes a bearing housing coupled to the base plate, a bearing disposed in the bearing housing, and a rotating shaft inserted into the bearing to rotatably support to the bearing, a portion of bearing protruded from a circumferential face of the bearing is press-fitted into an inner face of the bearing housing.
Abstract:
A motor includes a stationary unit, a bearing mechanism, a rotary unit, and a chucking device. The rotary unit includes a rotor yoke provided with a cover portion extending around the chucking device and designed to allow the storage disk to be directly or indirectly mounted thereto and a removal-preventing member fixed to the cover portion to prevent removal of the rotary unit from the stationary unit. The removal-preventing member made of metal. The removal-preventing member includes a removal-preventing portion, an upper fixing portion having a plurality of upper protrusions inserted into the through-holes of the cover portion and bent toward the upper surface of the cover portion, and a lower fixing portion making direct or indirect contact with the lower surface of the cover portion and cooperating with the upper fixing portion to fix the position of the removal-preventing portion in a direction parallel to the center axis.
Abstract:
A motor includes a sleeve supporting a shaft such that an upper end of the shaft protrudes upwardly along an axial direction, a sleeve housing in which an outer diameter portion of the sleeve is inserted and supported, an oil sealing cap covering the sleeve at an opposite side of the sleeve housing, and having a sealing protrusion protruding from a top surface thereof to form a capillary seal of oil between the shaft and the sleeve, and a hub base pressure-fitted and fixed on the upper end of the shaft, and having a hub-base outer diameter portion facing the sealing protrusion and forming a first oil sealing part with the sealing protrusion.
Abstract:
The invention reduces vibration in a plastic element used in an electrical drive. The plastic element has a baseplate, at least two commutator brush boxes leading to a shaft passage channel which passes through the baseplate, and a bearing seat which is connected to the baseplate via at least one supporting arm for holding a shaft bearing. The invention provides for the entire contact area of the supporting arm with the baseplate to be arranged at a lateral distance from the commutator brush boxes.
Abstract:
Disclosed herein is a spindle motor. The spindle motor includes a rotating shaft, a rotor cover which is secured to the rotating shaft and rotates the rotating shaft, a bearing for rotatably supporting the rotating shaft, a holder for holding the bearing, and a holding magnet which is directly mounted to an inner wall of the rotor cover. In this case, the holding magnet is positioned above the bearing to prevent oil from being discharged from the bearing to the outside.
Abstract:
In a spindle motor, a capillary seal portion having a radial dimension that decreases in an axially downward direction, and a labyrinth seal portion arranged above the capillary seal portion are defined between an outer circumferential surface of a rotating member and an inner circumferential surface of a tubular portion. The capillary seal portion includes a liquid surface of a lubricating oil positioned therewithin. The radial dimension of the labyrinth seal portion is smaller than the radial dimension of an upper end portion of the capillary seal portion, so that the labyrinth seal portion contributes to reducing evaporation of the lubricating oil.