Abstract:
The present invention provides an optical communication method and an optical communication system in which eavesdropping is more difficult than in conventional techniques. An optical communication system in one embodiment of the present invention comprises: a photon pair generator which generates a correlated photon pair; a polarizer which is provided on an optical path of one photon of the correlated photon pair and direction of which is changeable based on information to be transmitted; a shutter which is provided between the photon pair generator and the polarizer on the optical path of the one photon of the correlated photon pair and which is capable of blocking the one photon of the correlated photon pair; and a photon detector which is provided on an optical path of another photon of the correlated photon pair.
Abstract:
A quantum communication system, comprising: a quantum transmitter optically coupled to a first waveguide; a first communication device optically coupled to a second waveguide; a multi-core optical fiber comprising a first core and a second core; a spatial multiplexing unit, configured to optically couple the first waveguide to the first core and the second waveguide to the second core.
Abstract:
A system, for example an optical communication system, includes an optical transmitter. The transmitter is configured to direct towards an optical fiber a spatially multiplexed optical signal. The optical fiber is configured to convey data via the multiplexed optical signal from the transmitter to a receiver. The transmitter is configured to set a signal-to-noise ratio (SNR) or a transmission capacity of the multiplexed optical signal to achieve a predetermined secrecy capacity of the transmission.
Abstract:
Apparatus for an optical communications network has optical paths for optical traffic, and optical ports, one of which is an unused output port. A security monitoring system has a blocking part coupled removably to the unused output port to occupy it to prevent unauthorized access. An optical detector can detect optical signals passing through the unused output port to the blocking part, and there is alarm circuitry configured to output an alarm signal based on the detecting of the optical signals. This monitoring can help make the node more secure from interference or from eavesdropping. By blocking the port, the monitoring can be independent of the type of signals on the optical paths. The system can be passive or active, and does not require a change in the installed node configuration and so can be added easily to existing infrastructure.
Abstract:
A system and method for removing radio frequency emissions from an electronic device. The system comprises collectors for collection of the radio frequency signals, combiners for combining the signals to produce a combined signal, fiber optic transmitter for up-converting the combined radio frequency signals to an optical wave length signal, optical fiber for directing the optical signal, and a termination device for terminating the optical signal.
Abstract:
Systems and methods for digital communication utilizing entangled qubits are disclosed. The disclosed systems and methods exploit selective entanglement swapping to transfer an entangled state between a sending device and a receiving device. Each device includes pairs of qubits that are independently entangled with pairs of qubits in the other device. By selectively entangling the qubits within a pair in the sending device, the qubits of the corresponding pair in the receiving device also are selectively entangled. When the qubits are entangled, they are projected onto a particular entangled state type. Though no information may be transferred through selective entanglement of one qubit pair, systems and methods of the present disclosure determine whether a set of pairs of qubits are entangled by determining whether the distribution of pairs is a correlated or uncorrelated distribution (a probabilistic approach) and transform the distribution type to a classical bit of data.
Abstract:
A reactive metal optical security device for implementation in an optical network and/or system to provide a mechanism for disrupting the optical network and/or system. The security device includes a mirror comprising a reactive metal stack and configured to reflect an optical signal and receive an electrical signal. The security device further includes a semiconductor chip configured to send the electrical signal to the mirror.
Abstract:
Techniques are described for identifying a rogue network interface device whose laser is not under control of a controller of the network interface device. The techniques identify the rogue network interface device based on reception of a predefined data pattern in a timeslot that is not reserved for any of the network interface devices without needing to disable upstream data transmission from the network interface devices during their assigned timeslots. The techniques also relate to a network interface device determining whether the network interface device is transmitting optical signals at a wavelength different than the wavelength that the OLT to which the network interface device is associated receives.
Abstract:
A fiber optic assembly includes an optical cable supporting a plurality of optical fibers and a furcation integrated with the optical cable. The furcation separates optical fibers of the plurality into a first set and a second set. The first set includes a loopback channel that enters the furcation, loops around within the furcation, and then returns to the optical cable such that optical transmissions passing along the loopback channel pass twice through the optical cable in opposing directions. The second set passes through the furcation without looping back into the optical cable.
Abstract:
A fiber optic security system is provided. The fiber optic security system includes at least one length of fiber optic cable affixed to at least one item to be monitored using the fiber optic security system. The fiber optic security system also includes at least one local control node, the at least one local control node including at least one light source for generating and transmitting light through the at least one length of fiber optic cable, and the at least one local control node monitoring a status of the light. The fiber optic security system also includes a remote control unit for receiving information from the at least one local control node regarding the status of the light.