Abstract:
A system, apparatus and method are disclosed for separating a current frame of a composite video signal into a luminance signal and a chroma signal. A relative chroma correlation value is generated using a plurality of lines of the current frame. A weighted sum of inter-line pixel differences of the current frame is generated using the relative chroma correlation value. A frame difference signal is generated by subtracting a previous frame of the composite video signal from the current frame. A detected motion signal is generated that corresponds to motion detected in the current frame. The weighted sum of inter-line pixel differences, the frame difference signal, and the detected motion signal are combined to generate the chroma signal. The chroma signal is subtracted from the current frame to generate the luminance signal.
Abstract:
A first device transmits data over a first branch of a communications link toward a second device. That second device loops the received data pattern back over a second branch of the communications link. A bit error rate of the looped back data pattern is determined and a pre-emphasis applied to the transmitted data pattern is adjusted in response thereto. The first device further perturbs the data pattern communications signal so as to increase the bit error rate. The pre-emphasis is adjusted so as to reduce the determined bit error rate in the looped back data pattern in the presence of the perturbation. The steps for perturbing the signal and adjusting the pre-emphasis are iteratively performed, with the perturbation of the signal increasing with each iteration and adjustment of the pre-emphasis being refined with each iteration. The signal is perturbing by injecting modulation jitter into the signal (increasing each iteration) and adjusting amplitude of the signal (decreasing each iteration).
Abstract:
A plurality of resistive paths are coupled in parallel to a common node. A high side driver is operable responsive to first control signals to selectively supply current to certain ones of the resistive paths. A low side driver, including a plurality of selectively actuated current sink paths, is provided to sink current from the common node. A control logic circuit actuates a current sink path within the low side driver for each resistive path that is selectively supplied current by the high side driver. A substantially constant low side voltage drop through these sink paths is provided regardless of the number of resistive paths that are supplied current by the high side driver. A switched high side and low side configuration operating in an analogous way is also disclosed.
Abstract:
A portable housing capable of being carried by a certain person includes a circuit. The circuit includes a memory for storing private data concerning that certain person, a circuit operable to effectuate storage of the private data in the memory in a secure manner, and a processing unit operable to control access to the memory for purposes of reading private data concerning the certain person from the memory and storing private data concerning the certain person to the memory. The conditions under which access to the memory for read and write operations with respect to the private data is permitted are governed by parameters that are specified by the certain person to whom the stored private data concerns. A biometric sensor may also be included to capture identification information useful in implementing the operations for controlling access to the memory.
Abstract:
A method of manufacturing double-sided semiconductor die by performing a first plurality of processes to a first side of a wafer and performing a second plurality of processes to a second side of the wafer, thereby forming at least a first semiconductor device on the first side of the wafer and at least a second semiconductor device on the second side of the wafer. The wafer may be cut to form a plurality of die having at least one semiconductor device on each side.
Abstract:
A shadow hardware system and method is provided. The shadow hardware system provides an interface between an access device and shadowed devices. Shadowed devices are devices that the shadow hardware system provides an interface to the access device although the shadowed device may not actually be present or available to the access device, such as implementing a disk drive as flash memory. The access device, such as a host processor, issues requests to a disk drive and the shadow hardware system converts the requests to requests suitable for the flash memory. A shadow remapper redirects the requests to shadow registers and notifies the shadow controller of the pending request. The shadow controller accesses the shadow registers and modifies the registers (if necessary) before forwarding the registers to the actual hardware devices. Any suitable device may be shadowed.
Abstract:
A method and apparatus for touch detection, multi-touch detection and cursor control in which the acceleration of a control surface is sensed to provide sensed signals. The control surface is supported at one or more support positions and moves in response to a force applied by a user at a touch position. The sensed signals are received in a processing unit where they are used to estimate a change in the position of force application. A touch control signal is generated from the estimated change in touch position. The touch control signal may be output to a graphical user interface, where it may be used, for example, to control various elements such as mouse clicks, scroll controls, control of single or multiple cursors, or manipulation of views of an object on a visual display unit, or remote control manipulation of objects themselves.
Abstract:
A shallow trench isolation is formed in a semiconductor substrate adjacent a MOS transistor. The shallow trench is filled with a fill material while other processing steps are performed. The fill material is later removed through a thin well etched into layers above the trench, leaving the trench hollow. A thin strain inducing layer is then formed on the sidewall of the hollow trench. The well is then plugged, leaving the trench substantially hollow except for the thin strain inducing layer on the sidewall of the trench. The strain inducing layer is configured to induce compressive or tensile strain on a channel region of the MOS transistor and thereby to enhance conduction properties of the transistor.
Abstract:
A self-coexistence window reservation protocol for a plurality of Wireless Regional Area Network (WRAN) cells operating in a WRAN over a plurality of channels includes a sequence of self-coexistence windows that uniquely identifies a transmission period for each WRAN cell. A self-coexistence window reservation protocol is included within the first packet of a Coexistence Beaconing Protocol period identifying when each WRAN cell associated with a particular channel will transmit. When not actively transmitting, a WRAN cells remains in a passive, receiving mode to accept data. As the transmissions of each WRAN cell operating on a particular channel are scheduled, contention for a transmission period is eliminated.
Abstract:
A raised source-drain structure is formed using a process wherein a semiconductor structure is received in a process chamber that is adapted to support both an etching process and an epitaxial growth process. This semiconductor structure includes a source region and a drain region, wherein the source and drain regions each include a damaged surface layer. The process chamber is controlled to set a desired atmosphere and set a desired temperature. At the desired atmosphere and temperature, the etching process of process chamber is used to remove the damaged surface layers from the source and drain regions and expose an interface surface. Without releasing the desired atmosphere and while maintaining the desired temperature, the epitaxial growth process of the process chamber is used to grow, from the exposed interface surface, a raised region above each of the source and drain regions.