Abstract:
Methods and apparatuses are provided that include determining resources over which to measure signals from a base station. One or more parameters related to a resource restriction pattern can be provided to the device for measuring signals over indicated resources. The resource restricted pattern can correspond to a bitmap where each bit relates to a time period over which signals can be transmitted by the base station, and the bit can specify whether a signal received over the resource should be measured. The resource restriction pattern can correspond to a set or protected resources negotiated using a resource partitioning scheme.
Abstract:
Techniques for acknowledging data transmissions in a multi-carrier wireless communication network are disclosed. In one aspect, a UE determines a number of acknowledgement/negative acknowledgement (ACK/NACK) bits for a data transmission on one more component carriers (CCs) based on information obtained from a grant. The grant may be a downlink grant or an uplink grant, and the information obtained may include a number of CCs scheduled for data transmission and/or identifiers of the scheduled CCs. The UE may determine the number of ACK/NACK bits for acknowledging the data transmission based on the number of scheduled CCs and the identifier of each scheduled CC.
Abstract:
Certain aspects of the present disclosure relate to techniques for indicating downlink assignments to a user equipment (UE). According to certain aspects, the techniques generally involve generating a downlink assignment index (DAI) indicating a number of assigned downlink transmissions for a user equipment (UE) configured to communicate using multiple component carriers and transmitting a physical downlink control channel (PDCCH) containing the DAI to the user equipment (UE) in a frequency division duplexing (FDD) subframe in which uplink and downlink transmissions may take place at the same time on different carrier frequencies.
Abstract:
Systems and methodologies are described that facilitate operating an access terminal in an LTE based wireless communication environment utilizing extended microsleep. While in non-DRX mode, an access terminal can operate in on state for a first period of time and in extended microsleep state for a second period of time. Further, the first and second periods of time can form a repeating pattern where these periods of time alternate. Thus, the access terminal can turn on its receiver for the first period of time (e.g., decode downlink information while in on state) and turn off its receiver for the second period of time (e.g., inhibit decoding of downlink information while in extended microsleep state). Further, the first period of time in the repeating pattern can be one TTI (e.g., 1 ms) and the second period of time in the repeating pattern can be a plurality of TTIs (e.g., 5 ms).
Abstract:
System(s) and method(s) are provided for handover of a mobile terminal in a wireless communication system. Handoff resolution relies on both a downlink channel quality indication between a serving base station and the mobile terminal, and uplink channel quality indications amongst the terminal and a measurement set of target base stations. To generate UL channel quality indicators, the mobile station conveys a narrowband or broadband, sounding reference signal, and serving and target base stations measure UL and DL performance metrics (e.g., RSRP, RSSI, or RSOT). In backward handover, UL channel state information from target cells is received at the serving base station through backhaul communication, and handoff is resolved based on both UL and DL quality reports. In forward handover, the set of UL quality reports are conveyed to the mobile station to determine a target cell for handoff.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus maintains at least one PHR trigger for triggering communication of a PHR for a plurality of component carriers. In addition, the apparatus communicates the PHR for at least one of the component carriers upon the at least one PHR trigger being triggered. The communicated PHR may be an aggregated PHR that includes power headroom information on the PCC and activated SCCs. The communicated PHR may further include an index associating information in the PHR to a corresponding component carrier. The communicated PHR may further include information indicating use of a PUSCH reference for computing the PHR for the at least one of the component carriers on which there is no PUSCH transmission.
Abstract:
Methods and apparatus for beamforming for femtocells, such as in LTE wireless networks, to provide inter-cell coordination and interference mitigation are disclosed. A macrocell user equipment (UE) may determine information regarding an interfering femtocell node, such as a home eNodeB (HeNB). The information may be sent directly or indirectly, such as by a backhaul communication link, to the HeNB. The HeNB may adjust an output based on the information. The information may include spatial channel information, which may be used for beamforming at the HeNB output so as to mitigate interference in the direction of the UE.
Abstract:
System(s) and method(s) are provided for forward handover under radio link failure. A configurable criterion for radio link failure (RLF) is established through a reference threshold for a channel quality metric; the threshold (CQITH) can be determined at least on a quality-of-service basis or a per-terminal basis. A low-overhead indication of RLF is conveyed as a NULL CQI when the channel quality metric is below threshold. Onset of RLF triggers preparation of forward handover (FHO) at a terminal within a predetermined timer, during which normal service can resume if link quality recovers above CQITH. Forward handover is pursued once timer elapses. Preparation at the terminal can be complemented by preparation implemented in advanced to RLF condition, in accordance to a disparate threshold applied to terminal's measurements. Preparation of FHO includes backhaul exchange of operational information like buffered data, and context.
Abstract:
A method for wireless communication in a Long Term Evolution (LTE) network includes transmitting a request, from a first evolved Node B (eNodeB) of the LTE network to a second eNodeB of the LTE network, for the second eNodeB to yield a bundles of non-consecutive subframes. The method also includes configuring a User Equipment (UE), which is associated with the first eNodeB and experiencing interference from the second eNodeB, for uplink transmission in the plurality of bundles of non-consecutive subframes.
Abstract:
A control scheme using packet headers allows GSM EDGE Radio Access Network (GERAN) systems to increase spectral efficiency through multiplexing techniques, such as superposition coding, multi-user packet transmission, joint detection, and/or joint decoding. A fast feedback scheme for GERAN allows Voice over Internet Protocol (VoIP) frames to be transmitted over GERAN air interfaces without excessive feedback latency. As a result, Hybrid Automatic Repeat-reQuest (H-ARQ) acknowledgements may be timely provided for end-to-end VoIP calls that traverse GERAN air interfaces. Additionally, Incremental Redundancy H-ARQ and link quality feedback latencies are decreased.