Abstract:
Methods for detecting a hydrogen leak and quantifying a rate of the same in a polymer electrolyte membrane fuel cell stack are provided, as well as a fuel cell diagnostic apparatus that diagnoses a hydrogen leak in a fuel cell stack.
Abstract:
According to an example embodiment, a fuel cell component manufacturing assembly includes a support member that is configured to be situated adjacent the fuel cell component to provide support for the component. The support member has a perimeter corresponding to a perimeter of the component. A platen member has a configuration corresponding to at least a portion of the support member for being received against a portion of the component. A temperature of the platen member is controllable to achieve a desired temperature of a material situated adjacent the platen member. The platen member has a surface area that is less than a surface area of the component such that only the portion of the component is subject to pressure resulting from a force urging the platen member and the support member together with the component between the support member and the platen member.
Abstract:
A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system in a manner that increases the overall efficiency and decreases the overall weight of system. The system and method include a secondary blower for boosting air stream pressure level sufficient for operation of a reformer that is designed to minimize pressure drop; an integrated heat exchanger for recovering heat from exhaust and comprising multiple flow fields for ensuring inlet temperature requirements of a solid oxide fuel cell are met; and a thermal enclosure for separating hot zone components from cool zone components for increasing thermal efficiency of the system and better thermal management.
Abstract:
A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
Abstract:
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Abstract:
A method of forming a catalyst structure includes providing a catalyst support structure having a core and an inner carbide film on the core, depositing catalyst nanoparticles on the catalyst support structure, and forming an outer carbide film on the catalyst support structure after the step of depositing catalyst nanoparticles. The outer carbide film is preferentially formed on the catalyst support structure compared to the catalyst particles.
Abstract:
Fuel cell systems and related methods involving accumulators with multiple regions of differing water fill rates are provided. At least one accumulator region with a relatively more-rapid fill rate than another accumulator region is drained of water at shutdown under freezing conditions to allow at least that region to be free of water and ice. That region is then available to receive water from and supply water to, a fuel cell nominally upon start-up. The region having the relatively more-rapid fill rate may typically be of relatively lesser volume, and may be positioned either relatively below or relatively above the other region(s).
Abstract:
An exemplary fuel cell system includes a cell stack assembly having a plurality of cathode components and a plurality of anode components. A first reactant blower has an outlet situated to provide a first reactant to the cathode components. A second reactant blower has an outlet situated to provide a second reactant to the anode components. The second reactant blower includes a fan portion that moves the second reactant through the outlet. The second reactant blower also includes a motor portion that drives the fan portion and a bearing portion associated with the fan portion and the motor portion. The motor portion has a motor coolant inlet coupled with the outlet of the first reactant blower to receive some of the first reactant for cooling the motor portion.
Abstract:
An aqueous ionomer gel having a high viscosity, particularly a proton conducting ionomer, as well as to related products incorporating such gels. Such aqueous ionomer gels are suitable for suspending catalysts for formation of catalyst inks, which in turn are suitable for screen printing on a variety of surfaces. Representative surfaces are the electrode or membrane surfaces in an electrochemical fuel cell. Methods for making aqueous ionomer gels are also disclosed.
Abstract:
An ion-exchange membrane may be continuously coated by depositing a catalyst composition on a release surface, drying the catalyst at an elevated temperature and then transferring the dried catalyst layer onto an ion-exchange membrane by applying pressure at a different elevated temperature. Also disclosed is an apparatus for thus continuously coating an ion-exchange membrane. The catalyst coated membrane is of particular use in polymer electrolyte membrane (PEM) fuel cells for which a membrane electrode assembly may be prepared by bonding fluid distribution layers to the catalyst coated membrane.