Abstract:
A power converting circuit having the function of circuit detecting is provided. The power converting circuit has a transistor, a controller and a detecting circuit. The transistor receives an input voltage. The controller is coupled to a control end of the transistor to control the conducting state of the transistor so as to stabilize the output of the power converting circuit. The detecting circuit detects at least one of the control end and the low voltage end of the transistor, and generates a state signal when the detected voltage of any one of the control end and the low voltage end does not fall within a corresponding predetermined voltage range. The state signal is utilized for stopping a power circuit which provides the input voltage providing the input voltage. In addition, a light emitting diode driving circuit having the function of circuit detecting is also provided.
Abstract:
A MOSFET layout is disclosed. The MOSFET comprises a drain region, a gate region, a source region and a body region. The gate region is disposed outside the drain region and adjacent to the drain region. The source region has a plurality of source sections, which are disposed outside of the gate region and adjacent to the gate region. Each of two adjacent source sections has a source blank zone there between. The body region has at least two body portions, which are disposed at the source blank zones and adjacent to the gate region.
Abstract:
A circuit for restraining a shoot through current comprises a master selecting unit and a logic unit. The master selecting unit receives an input signal, and outputs first and second master selecting signals. The logic unit comprises first and second logic elements which generate first and second control signals for controlling two transistor switches connected in series. The first and second logic elements change the logic states of the first and second control signals according to the first and second master selecting signals. When the input signal is at a first logic level, the first logic element acquires a control privilege to change the logic state of the first control signal and trigger the second logic element to change the logic state of the second control signal. When the input signal is at a second logic, the second logic element acquires the control privilege.
Abstract:
An LED driving circuit is used for dimming by switching between an operating current and a maintaining current or by voltage clamping of a source/drain of MOSFET that is coupled to the LED module. When the LED module is dimmed off, the voltage across the LED module can be kept at a value around a lighting threshold voltage of the LED module that is a minimum voltage for lighting the LED module. Therefore, a voltage difference between the drain and the source of MOSFET coupled to the LED module is smaller than that in the conventional arts. Hence, a withstand voltage of MOSFET can be reduced, and cost of the LED driving circuit as well as the power consumption of MOSFET can be lessened, thereby improving integral efficiency of the circuit.
Abstract:
The present invention discloses a transistor driving module, coupling to a converting controller, to driving a high side transistor and a low side transistor connected in series, wherein one end of the high side transistor is coupled to an input voltage and one end of the low side transistor is grounded. The transistor driving module comprises a high side driving unit, a low side driving unit, a current limiting unit and an anti-short through unit. The high side driving unit generates a high side driving signal to turn the high side transistor on according to a duty cycle signal, and the low side driving unit generates a low side driving signal turn the low side transistor on according to the high side driving signal. The current limiting unit is coupled to the high side transistor and the high side driving unit, and generates a current limiting signal when a current flowing through the high side transistor higher than a current limiting value. The high side driving unit is stopped to generate the high side driving signal when receiving the current limiting value. The anti-short through unit is coupled to the high side driving unit and the low side driving unit to control the generations of the high side driving signal and the low side driving signal to have the timings of the high side driving signal and the low side driving signal non-overlapped.
Abstract:
A load driving circuit and a multi-load feedback circuit is disclosed. The load driving circuit and the multi-load feedback circuit are adapted to drive a LED module that has a current balancing circuit for balancing the currents flowing through LEDs. The load driving circuit and the multi-load feedback circuit modules the electric power transmitted by the LED driving apparatus to a LED module according to voltage level(s) of current balancing terminals having insufficient voltage in the current balancing circuit, and so the voltage levels of the current balancing terminals are higher than or equal to a preset voltage level, further increasing the efficiency thereof.
Abstract:
A power conversion driving circuit is provided. The power conversion drive circuit includes a converting circuit, a control circuit and a load circuit. The converting circuit is coupled to an input voltage. The control circuit is coupled to the converting circuit for controlling the converting circuit to convert the input voltage to an output voltage. The load circuit includes a load detecting unit and a load. The load is coupled to the output voltage, and the load detecting unit is coupled to a detecting voltage source. The load detecting unit generates a load detecting signal to re-start the control circuit when the load circuit is inserted into the power conversion driving circuit.
Abstract:
The present invention discloses an LED driving circuit and controller, capable of maintaining an average value of a current flowing through an LED module at a predetermined current value. The LED driving circuit and controller compensates influences of any factors deviating the average value of the current flowing through the LED module by modulating a period of constant on time or constant off time, or by modulating the determining value(s) of current peak value and/or current valley value according to a difference between an actual average value and the preset current value.
Abstract:
The present invention provides a full-bridge driving controller and a full-bridge converting circuit, which have the function of soft switch, to provide a DC output voltage. The present invention employs a resonant unit to oscillate the current flowing through the converting circuit at a resonant frequency. The full-bridge driving controller switches four full-bridge transistor switches at an operating frequency higher than the resonant frequency, so as to achieve the function of soft switch.
Abstract:
A spike suppression circuit for filtering out voltage oscillation produced by an inductive component and a conversion control circuit are disclosed. The spike suppression circuit includes an energy release path and a detection circuit. One end of the energy release path is coupled to a connection terminal of a circuit, and the other end thereof is coupled to a reference voltage. The detection circuit is coupled to the connection terminal. The detection circuit has a high-pass component for turning on the energy release path when the voltage on the connection terminal has a high-frequency signal.