Abstract:
A puncturing device for generating a puncture wound to sample a body fluid is provided and comprises a press-on part or contact element to be pressed against a body part to generate a puncture, a test sensor for measuring a test parameter value, and an analytical unit for determining whether the value of the measured test parameter satisfies a predefined minimum requirement for successful sampling. In one embodiment, the value of the test parameter is monitored during a waiting period by the test sensor once the value satisfies the predefined minimum requirement. After the waiting period has elapsed, so long as the values of the test parameter monitored during the waiting period are in a range of values that predicts sampling to be successful, the analytical unit initiates a puncture.
Abstract:
A puncturing system has a carrier tape carrying multiple lancets, a device housing comprising a conveying facility for moving the lancets into a usage position consecutively by moving the carrier tape in a conveying direction, a puncturing drive for accelerating one of the lancets that is positioned in the usage position in a puncturing motion, an opening in the device housing for touching against a body part in which a puncture is to be made by the puncturing motion of one of the lancets, an actuation facility for driving the conveying facility, and an unlockable interlock comprising a stop that blocks further transport of the carrier tape as soon as one of the lancets has reached the usage position.
Abstract:
An actuator for driving a test element is disclosed. The test element can comprise a lancet for perforating the skin of a living organism. The actuator can comprise an engaging part for engaging and driving the test element in a lancing motion. The actuator can further comprise a lancing actuator and a lancing spring. The lancing actuator can bias the lancing spring by executing a forward movement and thereby can exert a biasing force on the engaging part. The actuator can further comprise a latch element. The latch element can be a force-sensitive latch element for exerting a retention force to hold back the engaging part. The retention force can counteract the biasing force. The latch element can release the engaging part when the biasing force exerted by the lancing actuator exceeds the retention force exerted by the latch element, thereby allowing the test element to perform the lancing motion.
Abstract:
The invention relates to an analysis apparatus with an analysis device for analyzing body fluids, and a magazine for test elements with a fresh supply container and a transfer unit that comprises a transfer element. At least one aperture for receiving a test element is formed in the circumferential surface of the transfer element. A waste container is provided in which used test elements are stored again after use.
Abstract:
The present invention provides a puncture aid comprising a housing in which a lancet holder with a lancet is displaceably mounted, the lancet holder being connected to a spring element. The lancet holder has at least one bearing element and the housing has a support surface arranged such that the bearing element rests on the support surface in a first position of the lancet holder. A trigger unit is provided, actuation of which transfer the lancet holder to a second position by means of a relative rotational movement of the bearing element and the support surface, so that the bearing element falls from the support surface in the second position of the lancet holder, and the tensioned spring element at least partially relaxes and moves the lancet holder such that the tip of the lancet emerges from the opening of the housing. The puncture aid includes a blocking element which is arranged such that it blocks a relative rotational movement of the bearing element and the support surface with respect to one another after the trigger unit has transferred the lancet holder to the second position with the result that reuse of the puncture aid is prevented.
Abstract:
The present invention generally relates to a system for sampling body fluids. In particular, the system has an implantable catheter for introduction into a tissue, a pump for transporting a volume of the body fluid out of the catheter, a volume determination unit for determining the volume of fluid and a control means for controlling the pump means based on the determined volume of body fluid.
Abstract:
According to the invention the analytical system includes a transport unit which is driven by piezoactive elements. The transport unit enables a direct or indirect transport of the test elements thus enabling a complete or partial automation of analytical methods. Furthermore the invention encompasses a transport unit for transporting a test element which according to the invention is controlled by an optical detector which detects the test element in the system.
Abstract:
A needleless hypodermic injection system for injecting a liquid medication, which system comprises a disposable cartridge which contains a medication and which comprises a propellant and an igniter, and a reusable application device which comprises a pressure chamber for receiving the medication cartridge, actuation means including an ignition system and means for ensuring reliability and safety of the system. The reusable application device comprises: (a) a housing including a fist housing section and a second housing section which are adapted to be assembled together by a screwing operation, the first housing section comprising a front part having an injection outlet and a chamber adapted to receive a the cartridge contains the medication to be injected and also contains a propellant and an igniter, and (b) means for selectively activating said igniter of said cartridge when predetermined conditions are fulfilled.
Abstract:
Blood withdrawal system for withdrawing blood for diagnostic purposes, comprising a housing with an outlet opening for the tip of a lancet, a lancet guide and a lancet drive. The lancet drive comprises a plural lever coupling mechanism, forming a connection between the drive element and the lancet during the puncturing movement and comprising two levers connected to each other via a first swivel joint, wherein one of the levers is coupled to the lancet with its end facing towards the lancet by means of a second swivel joint, and the second lever comprises a third swivel joint at the end facing away from the lancet. During the cocking movement, the freedom of movement of the lancet is limited in such a manner that the lancet tip does not protrude from the outlet opening.
Abstract:
The invention concerns a lancet system comprising a plurality of essentially needle-shaped lancets, a drive unit which has a drive element which is moved from a resting position into a lancing position in order to carry out a lancing process, a storage area to store the lancets, a withdrawal area to guide at least the tip of the lancet out of the system during the lancing process and a transport unit which can transport lancets from the storage area into the withdrawal area, wherein the drive element is arranged in such a manner that in the withdrawal area it can act on the lancet located there to carry out a lancing process and thus move the lancet from a resting position into a lancing position and wherein the system has a retraction device in the withdrawal area which can interact with the lancet located in the withdrawal area in order to move the lancet after completion of the lancing process from the lancing position into the resting position and it concerns a lancet magazine adapted to the system, a corresponding lancing device and a working process for the system.