Abstract:
A fuel cell includes: a membrane electrode assembly (MEA) including a polyelectrolyte membrane having first and second sides to which a fuel electrode and an air electrode are joined, respectively; a fuel electrode housing having an internal face on which a fuel channel and a fuel-side electrode film are formed; and an air electrode housing having an air passage formed therein, the air electrode housing having an internal face on which an air-side electrode film is formed. The fuel electrode housing is joined to the MEA with the internal face thereof facing the fuel electrode of the MEA so that the fuel-side electrode film is electrically connected to the fuel electrode. The air electrode housing is joined to the MEA with the internal face thereof facing the air electrode of the MEA so that the air-side electrode film is electrically connected to the air electrode.
Abstract:
A disclosed antenna device includes a ground plate, a feeding unit that extends from the ground plate at a predetermined angle for a predetermined length, the feeding unit being prepared perpendicular to the ground plate, and a non-conductive section formed in the ground plate. The shape of the non-conductive section is adjusted according to a desired frequency characteristic.
Abstract:
A filler pipe arrangement structure (20) includes left and right rear side frames (12, 13) extending longitudinally of a vehicle body, and a rear cross member (16) disposed in the vicinity of rear axles and extending crosswise between the rear side frames so as to reinforce the rear side frames. A filler pipe (31) connected at an upper end to a fueling port (33) of the vehicle body and having a lower end connected via a filler hose (32) to a fuel tank (18) is attached to a left front portion (24) of the left rear side frame located forwardly of the rear cross member.
Abstract:
A system controller 115 includes a table data storage 131 storing table data for calculating the order of priority of each destination, and a priority destination list creator 132 for creating a priority destination list based on the table data in such a manner that priorities of destinations that suit the preferences of the user will set high based on destination conditions set by the user and the stored table data.
Abstract:
An input device includes: magnets that are arranged in a flat state; coils that are arranged so as to face the magnets, and are moved in relation to the magnets; a mobile member that is connected to the coils; a first guide member that slidably guides the mobile member; a second guide member that slidably guides the first guide member in a direction perpendicular to the sliding direction of the mobile member; and a switch that is operated by an operator to carry out an input operation. In this input device, the switch is formed on the mobile member.
Abstract:
An actuator includes magnets that are arranged in a flat form, coils that face the magnets, a moving member that is connected to the coils, a first holding member that holds the moving member in such a manner that the moving member can slide within a predetermined range; and a second holding member that holds the first holding member in such a manner that the first holding member can slide within a predetermined range in a direction perpendicular to the sliding direction of the moving member. This actuator moves the coils against the magnets.
Abstract:
A mobile communication system including a plurality of base stations arranged in a communication area, each emitting a radio wave inherent thereto and a mobile station moving in the communication area and communicating with respective base stations via the transmitted radio waves. There is previously stored a location correlation data group including correlation data representing correlation situations of a plurality of arriving radio waves produced by the transmitted radio waves at respective ones of a plurality of sampling locations within the communication area, the location correlation data corresponding to respective locations. Upon reception of radio waves at a current location of the mobile station, current correlation data is calculated representing correlation situations among received arriving radio waves for the respective mobile station. The location correlation data in the location correlation data group is compared with the current correlation data, and the current position of the mobile stations is determined in accordance with a result of the comparison, generating the determined current position data.
Abstract:
An automatic adjustment system that includes: a transmission device that includes a constant voltage output unit that outputs a constant-voltage signal to a cable; and a reception device that includes a voltage detecting unit and a control unit. The voltage detecting unit receives the constant-voltage signal transmitted through the cable and detects the voltage of the signal, and the control unit determines signal attenuation based on the voltage detected by the voltage detecting unit and adjusts the gain of a receiving unit that receives the signal from the transmission device. This automatic adjustment system performs gain adjustment on the receiving unit when a cable insertion/pull-out sensing unit senses that the cable is connected to a connector.
Abstract:
A communication device performs a radio communication in an ultra wideband with the use of the impulse radio system. The communication device includes a receiver. The receiver is equipped with antennas, a correlation circuit, and a CPU. The antennas receive send signals from a transmitter. The correlation circuit detects a synchronization pulse having a longer cycle than a highly redundant data pulse among received signals. The CPU performs a synchronization process based on the synchronization pulse. The CPU establishes a channel based on the synchronization pulse, and selectively changes the antennas according to the received signal. In the case where the receive signal has not been received for a given period of time after the synchronization is established correlation signals is stopped outputting to start a polling signal. The correlation signals are output to obtain-correlation of the receive signals.