Abstract:
The present disclosure provides a transmission power control method for a physical uplink shared channel, including: when there is only uplink control information but no uplink shared channel data sent over the physical uplink shared channel, the transmission power of the physical uplink shared channel is set according to the total number of bits contained in a channel quality indication signaling and its corresponding cyclic redundancy check as well as an amplitude offset. The present disclosure also provides a transmission power control system for a physical uplink shared channel. The method and system described in the present disclosure can ensure the overall performance of a system.
Abstract:
The present invention provides a device and method for interleaved encoding RS code, the RS code used being RS (N, K, S). The method comprises: firstly, writing the data in the data packets to be RS interleaved encoded into the information region of the RS code byte interleaver column-by-column in turn; then, constructing the data of each row of the check region based on the data written into the information region; finally, performing cyclic shifting processing on the data of the check region, and reading out the data of the check region in the RS code byte interleaver column-by-column in turn. The present invention can be used to improve the performance of the entire data packet outputted, thereby enhancing the reliability of the data link layer, by evenly spreading the areas with a filled value of 0 in the last column of the information region that is filled with valid information and by performing cyclic shifting processing on the data of the check region so that the data of that region offer larger time span and good diversity effect when outputted.
Abstract:
The present invention provides a method for decoding a low density generator matrix code (LDGC), applied for decoding transmitted original information bits encoded in LDGC code. The method comprises the following steps: A: deleting a part erased by a channel in a received code word sequence R filled by a known bit sequence to obtain an erased code word sequence Re, and deleting the rows corresponding to the erased part from a transposed matrix GIdgct of a generator matrix of the LDGC to obtain the erased generator matrix Ge; B: permuting columns of Ge such that an M-order square matrix with an element in the 0th row and 0th column being a vertex is a triangular matrix to obtain the permuted generator matrix Gf; and C: calculating the original information bits using Gf and Re.
Abstract:
A spring supported lower clamper for direct tensile test, comprising a lower connection member, a lower end cap for holding a sample, a lower chain for connecting the lower connection member with the lower end cap, and spring-type supporting provisions for supporting a broken-apart lower part of the sample formed during the tensile test and the lower end cap. During the tensile test, the sample, the lower end cap and the lower chain are supported by the spring-type supporting provisions. Thus the sample can be prevented from being broken abruptly when a tensile force in the sample reaches its maximum level, and the mechanical behavior after the maximum tensile force is reached can be measured.
Abstract:
A local positioning system is proposed for wirelessly locating an object using existing features within a static environment, such as walls, as the references for determining the position of the system. An antenna 16 attached to the object transmits RF signals which are reflected by the surroundings. During a training mode, the reflected signals are used to train a neural network 22, 43 to map the position of the object to the characteristics of the reflected signals. During a working mode, the trained neural network is to identify the position of the object based on reflected signals in working mode. Optionally, the reflected signals may be subject to a clustering process before input to the neural network.
Abstract:
Methods and an apparatus for dynamic best fit compilation of mixed mode instructions are provided. In one embodiment, a provided method includes receiving a non-native software instruction at a device, generating a first native software instruction from a first instruction set based on the non-native software instruction, the generation of the first native software instruction occurring at the device, executing the first native software instruction at the device, generating a second native software instruction from a second instruction set based on the non-native software instruction, the generation of the second native software instruction occurring at the device, and executing the second native software instruction at the device.
Abstract:
Data is recovered from a write-once optical disk having data written on it. The disk is composed of a substrate and a dye layer. The data was originally written to the dye layer as patterns of pits and lands, but the dye layer is subject to corruption due to ageing so that the data cannot be read by a conventional read process. The data is recovered by exposing the surface of the substrate, measuring deformations to that layer caused by the write process, and extracting the data from the measured deformations by classifying the measured deformations into deformations typical of predetermined patterns of pits and lands.
Abstract:
An electronic device for wireless communication, a method, and a computer readable storage medium. The electronic device comprises: a processing circuit configured to: perform beam failure detection on a current service beam using a first beam quality index, and select a candidate beam from the other beams using the first beam quality index and a second quality index different from the first quality index, the candidate beam being used for beam recovery after beam failure.
Abstract:
A golf launching monitoring arrangement allows equipment to be placed at a position behind the player (i.e., behind the golf ball), to measure both club and ball movement. A 3D scan of the club head before the play serves two purposes: 1) 3D registration that enables accurate measurement of the club head position and orientation for the camera system measuring the club movement from the back; 2) for reconstruction of the launching scene. With a 3D model of the club head, a simple 3D model of the golf ball and accurate measurement of their movement during the play, a full 3D golf launching scene can be reconstructed authentically. With this reconstruction, the movement of both the club head and the resulting ball movement can be replayed at any viewing angle, with any frame rate and at whatever resolution for the players or the coaches to view and analyze.
Abstract:
A bending-resistant large core diameter high numerical aperture multimode fiber includes a core and a cladding surrounding the core. The core has a radius R1 in a range of 28 to 50 microns, a refractive index profile of a parabola shape with α being in a range of 1.9 to 2.2, and a maximum relative refractive index difference Δ1% max being in a range of 1.9% to 2.5%. The cladding includes an inner cladding and/or a trench cladding, and an outer cladding disposed from the inner to the outer in sequence. The radius R2 of the inner cladding is in a range of 28 to 55 microns, and the relative refractive index difference Δ2% is −0.1% to 0.1%. The radius R3 of the trench cladding is in a range of 28 to 60 microns, and the relative refractive index difference Δ3% is in a range of −0.15% to −0.8%.