Abstract:
Disclosed herein is a linear vibrator having a mass body which is accommodated in a casing defining an internal space and is vibrated. The linear vibrator includes a bracket supporting the linear vibrator from a lower position. The bracket has a depression in a bottom thereof such that a coil lead wire of a coil is placed in the depression, thus preventing friction between the coil lead wire and a movable unit.
Abstract:
A linear type vibration motor having a magnet casing is disclosed. The linear type vibration motor in accordance with an embodiment of the present invention includes a magnet assembly having a pair of magnets, in which same magnetic poles thereof face each other, a magnet casing, which has a hollow part formed therein and houses the magnet assembly in the hollow part, a base, which has a bobbin formed thereon and in which the magnet casing is inserted into the bobbin, a coil, which is coupled to the bobbin, a weight, which is coupled to both ends of the magnet casing, and a pair of elastic bodies, which are interposed between either end of the base and either end of the weight, respectively. Thus, the operating lifetime of the linear type vibration motor can be extended, and this arrangement can prevent the linear type vibration motor from being damaged by an external shock.
Abstract:
Provided is an organic pixel, which includes a semiconductor substrate including a pixel circuit, an interconnection layer having a first contact and a first electrode formed on a semiconductor substrate, and an organic photo-diode formed on the interconnection layer. For example, the organic photo-diode includes an insulation layer formed on the first electrode, a second electrode and a photo-electric conversion region formed between the first contact, the insulation layer and the second electrode. The photo-electric conversion region includes an electron donating organic material and an electron accepting organic material. The organic photo-diode may further include a second contact electrically connected to the first contact. The horizontal distance between the second contacts and the insulation layer may be less than or equal to a few micrometers, for example, 10 micrometers.
Abstract:
A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end; portion thereof extending over the isolation layer.
Abstract:
A unit pixel of a CMOS image sensor include a photodiode that transforms light to an electric charge, and accumulates the electric charge, and a plurality of transistors that generate an electric signal based on the accumulated electric charge. The photodiode has a slope shape based on incident angle of the light in a semiconductor substrate.
Abstract:
An FPCB and a method of manufacturing the same, in which an electrical signal-conductive portion of the FPCB is subjected to little stress so as not to be broken by fatigue in spite of repeated bending of the FPCB, thereby increasing the lifetime of the FPCB.
Abstract:
An image sensor including a deep guard ring and a noise blocking area and a method of manufacturing the same. The image sensor includes the deep guard ring and a deep P well surrounding the noise blocking area, thereby preventing crosstalk between adjacent pixels. In addition, an ion implantation layer is divided by the noise blocking area, so that substrate crosstalk is effectively eliminated.
Abstract:
A unit pixel array of an image sensor includes a semiconductor substrate having a plurality of unit pixels, an interlayer insulating layer disposed on a front side of the semiconductor substrate, a plurality of color filters disposed on a back side of the semiconductor substrate, a plurality of light path converters, each of the light path converters being disposed adjacent to at least one color filter and having a pair of slanted side edges extending from opposing ends of a horizontal bottom edge, and a plurality of micro lenses disposed on the color filters.
Abstract:
The semiconductor device includes: a first conductive-type first well and a second conductive-type second well configured over substrate to contact each other; a second conductive-type anti-diffusion region configured in an interface where the first conductive-type first well contacts the second conductive-type second well over the substrate; and a gate electrode configured to simultaneously cross the first conductive-type first well, the second conductive-type anti-diffusion region, and the second conductive-type second well over the substrate.