Abstract:
A dynamo-electrical machine includes a stator with teeth which are aligned with respect to a rotor, wherein at least a predeterminable number of teeth are surrounded by a winding system which is arranged in slots. The slots which are formed by the teeth and designed to be open, are each closed by a slot sealing element which has an electrically non-conductive and magnetically non-permeable material in which a tooth head widening element is provided in the area of those tooth sections of the tooth heads which face the air gap.
Abstract:
The aim of the invention is to provide a linear/rotation drive with an improved transmitter device for detecting the linear and rotational movements. For this purpose, the transmitter device (12, 14, 16, 17) for detecting the linear movement and/or rotational movement of the secondary part (4) of the linear drive (2) configured as an external rotor is at least partially arranged inside the primary part (6) of the linear drive (2). In this manner, the transmitter device (12, 14, 16, 17) is located in a magnetically shielded area. In order to avoid eccentricities in the transmitted device (12, 14, 16, 17), a journal (10) of the secondary part (4) is mounted on a bearing (11) in the primary part (6).
Abstract:
The invention relates to an electrical asynchronous machine comprising a stator and a rotor. The stator has a stator winding system comprising a plurality of toothed coils which are partially arranged in stator grooves. The rotor has a rotor winding system consisting of a plurality of short-circuited electrical lines arranged in the rotor grooves (7). The rotor comprises eleven, thirteen, seventeen or twenty-seven rotor grooves (7). In this way, losses caused by harmonic waves and torque ripple are reduced.
Abstract:
A permanently-excited synchronous machine (51), comprises a stator (53) and a rotor (55), the stator (53) preferably comprising a three-phase alternating current winding and the rotor (55) permanent magnets (57). The stator (53) has 21 grooves (1-21) and the rotor (55) four magnetic poles (39). The grooves of the stator (53) are wound such that a first harmonic is suppressed by a winding pattern and a second harmonic suppressed by magnet geometry.
Abstract:
The aim of the invention is to improve the production, design, and effectiveness of rollers or roller motors. Said aim is achieved by using a plastic support unit for the individual magnets in order to produce a multipole motor that has a small diameter and can be integrated into a roller. Said plastic support unit can be unscrewed after being incorporated into a return tube. Additionally, a roller comprising an integrated roller motor (24) is cooled by means of an external or internal cooling device (25, 26) so as to increase constant torque. Furthermore, in order to reduce the design of rollers which have to be braked as well, a braking device is provided which can be integrated into the roller. And finally, in order to simplify contacting of the stator during the production thereof, a divisible arbor is provided which comprises corresponding contact supports on both parts of the arbor.
Abstract:
A permanent magnet synchronous machine includes a stator, and a rotor which defines with the stator an air gap. The stator includes a plurality of teeth which are disposed in spaced-apart circumferential relationship and separated from one another by a tooth pitch. Each of the teeth has a shaft which terminates in a tooth head adjacent the air gap, with the tooth heads of neighboring teeth being separated from one another by a slot. The tooth heads are constructed to prevent saturation. The rotor has permanent magnets which are aligned in flux concentration direction and arranged to define a pole pitch, wherein a pitch ratio of tooth pitch to pole pitch is ≧2.5.
Abstract:
A permanent magnet synchronous machine includes a stator, and a rotor which defines with the stator an air gap. The stator includes a plurality of teeth which are disposed in spaced-apart circumferential relationship and separated from one another by a tooth pitch. Each of the teeth has a shaft which terminates in a tooth head adjacent the air gap, with the tooth heads of neighboring teeth being separated from one another by a slot. The tooth heads are constructed to prevent saturation. The rotor has permanent magnets which are aligned in flux concentration direction and arranged to define a pole pitch, wherein a pitch ratio of tooth pitch to pole pitch is ≧2.5.
Abstract:
An electric machine includes a stator and a rotor which is spaced from the stator at formation of an air gap therebetween. In order to cool down heat-generating components of the stator and the rotor, the electric machine is provided with a cooling system which includes heat pipes placed in proximity of the heat-generating components.
Abstract:
A rotor for permanent magnet synchronous machines with a reduction in the stray flux transmitted through the rotor shaft includes substantially ring-shaped punched sheet metal plates with a central opening for receiving the rotor shaft, and a plurality of recesses arranged in the circumferential direction, wherein at least two permanent magnets can be inserted in each of the recesses. A corresponding intermediate sheet metal segment is arranged or can be arranged in each of the recesses between the permanent magnets. At least one of the recesses is shaped so as to form an air gap between the surface of the intermediate sheet metal segment that is oriented radially inwardly towards the center and an edge of the recess that is oriented radially outwardly from the center, when the permanent magnets are inserted radially towards the outside. The air gap aids in attenuating the stray flux.
Abstract:
A method of producing a laminated core of a stator of an electric motor, includes at least one laminated core of a stator formed by stacked sheet-metal laminates, which have mechanical individual poles and of poles connected in the circumferential direction of the stator, at least one pole shank and at least one pole shoe facing a rotor. The sheet-metal laminates are configured with indentations and protrusions and, as a result, the sheet-metal laminates form the laminated core of the stator by interengagement of the indentations and protrusions. The mechanical poles of the laminated core of the stator have windings, and webs are provided between the poles to connect the connected mechanical poles in the circumferential direction. The axial set-up of the sheet-metal laminates of the laminated core of the stator has a predeterminable alternating succession of poles with a connecting web and poles without a connecting web.