Abstract:
There is provided a scanning optical system, which is provided with a light source that emits at least one beam, a polygonal mirror, and an imaging optical system that converges the at least one beam deflected by the polygonal mirror to form at least one beam spot on a surface to be scanned. The at least one beam incident on the polygonal mirror is inclined in an auxiliary scanning direction which is perpendicular to the main scanning direction. Further, at least one lens surface of the imaging optical system is configured such that a beam reflected therefrom proceeds toward an outside region of the polygonal mirror.
Abstract:
A slider tester includes a driving unit that rotates a test medium, a set plate that detachably supports a slider as a single body, and an investigating apparatus that is electrically connected to the slider supported by the set plate and investigates the characteristics of the slider. A movable support part 30 that tiltably supports the slider is provided on the set plate. There is also provided a pressing mechanism that elastically presses the slider via the movable support part toward a surface of the medium to dispose the slider floating over the surface of the medium. The pressing mechanism includes an elastic body 56 composed of a plate spring that contacts the movable support part and elastically presses the movable support part.
Abstract:
In the method of forming a multi-piled bump, metal balls can be stably and securely piled so as to form the multi-piled bump having a prescribed height. The method of the present invention comprises the steps of: holding a metal wire by a capillary; sparking and melting the wire so as to form metal balls; piling a plurality of the metal balls with applying a load and ultrasonic vibrations thereto, and characterized in that a tail length of the metal wire, which is held by the capillary, is controlled to make a gap between a center of the metal wire and a center of the metal ball one half of a diameter of the metal wire or less.
Abstract:
An objective lens for recording data to and/or reproducing data from first and second optical discs. The objective lens is provided with at least one surface including a plurality of annular zones divided by steps. The steps has functions of phase shifting a wavefront of light passing through the plurality of annular zones so that a beam spot formed at a converging point of an average wavefront of the wavefront phase shifted by the steps is used for the first and second optical discs. The plurality of annular zones of the at least one surface includes at least one annular zone structure which includes first and second annular zone groups, each of which has at least three steps for phase shifting the wavefront in a first direction, and a first return step which is a step formed at a boundary between the first and second annular zone groups. The first return step phase shifts the wavefront in a second direction opposite to the first direction. An absolute value |Δψ1| of a phase shifting amount of the first light beam given by the first return step satisfies a condition: 6π
Abstract:
In the method of forming a multi-piled bump, metal balls can be stably and securely piled so as to form the multi-piled bump having a prescribed height. The method of the present invention comprises the steps of: holding a metal wire by a capillary; sparking and melting the wire so as to form metal balls; piling a plurality of the metal balls with applying a load and ultrasonic vibrations thereto, and characterized in that a tail length of the metal wire, which is held by the capillary, is controlled to make a gap between a center of the metal wire and a center of the metal ball one half of a diameter of the metal wire or less.
Abstract:
An objective lens on which a beam having parallel light fluxes is incident includes a single element lens and a reflection suppressing coating formed on at least one surface of the single element lens. The reflection suppressing coating is formed such that the reflectivity across a radius of the objective lens exhibits a local maximal value, and the reflection suppressing coating is formed to achieve the following condition: 0.6
Abstract:
There is provided an objective lens used for a plurality of types of optical discs having a front surface and a rear surface, each of which includes an inner region and an outer region. The outer region has a surface shape which suppresses a coma caused when a beam used for a first optical disc is incident thereon obliquely with respect to an optical axis of the objective lens. The inner region is configured such that, at a boundary position between the inner region and the outer region, the coma caused when a beam used for a second optical disc is incident on the inner region obliquely at a first angle with respect to the optical axis is less than the coma caused when the beam used for the second optical disc is incident on the outer region obliquely at the first angle with respect to the optical axis. Further, an inclination θ2A of the inner region and an inclination θ2B of the outer region of the rear surface satisfy a condition: −2.5
Abstract:
Disclosed is an objective lens of an optical pick-up that converges light beams of two different wavelengths onto recording layers of optical discs of two different standards, respectively. The objective lens includes a refractive lens having a positive power and a diffractive lens structure formed on one surface of the refractive lens. The diffractive lens structure has a plurality of concentric ring areas with minute steps at the boundaries therebetween. The diffractive lens structure maximizes the diffraction efficiency of the third order diffracted light at the shorter wavelength and maximizes the diffraction efficiency of the second order diffracted light at the longer wavelength. This enables the diffractive lens structure to correct the chromatic aberration at the respective wavelengths with keeping high diffraction efficiency.
Abstract:
An objective lens for an optical pick-up has a refractive lens element provided with a diffraction lens structure on at least one surface thereof. The diffraction lens structure has a plurality of annular zones. The objective lens is capable of converging at least two beams having different wavelengths on at least two types of optical discs having different data recording densities, respectively. The objective lens is partitioned into a common area through which a beam with a low NA passes, and an exclusive high NA area which is designed to converge a beam with a high NA. The boundaries of the annular zones formed on the exclusive high NA area are designed independently from boundaries obtained from an optical path difference function so that the beam with the high NA is converged substantially on a certain point and the beam with the low NA is diffused.
Abstract:
A diffraction optical element is configured such that a plurality of annular zones having minute steps extending in a direction of the optical axis therebetween are formed on a base element. The plurality of annular zones include narrow and wide zones respectively satisfying conditions (1) and (2): &Dgr;Z(i) (3/2)·&Dgr;E(i) (2), wherein, i represents the order of the steps counted from the optical axis, &Dgr;E(i) represents an absolute value of an OPD provided by the i-th step, and &Dgr;Z(i) represents an absolute value of a difference between OPDs provided, with respect to a base curve, by an inner side end portion and outer side end portion of an annular zone between an i-th step and (i+1)-th step.