Abstract:
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
Abstract:
An exemplary light source device (10) includes a power supply (12), a light source (14), and a photodetector (16). The photodetector includes a light sensor (17) and a resistor (18) connected in parallel. The power supply, the light source, and the photodetector are connected in series. When the intensity of ambient light increases, a resistance of the light sensor decreases so as to increase a light intensity of the light source. When the intensity of ambient light decreases, the resistance of the light sensor increases so as to decrease the light intensity of the light source.
Abstract:
A liquid crystal display panel includes a display area. The display area includes a first scanning line, two second scanning lines, and a number of pixel units arranged in two rows and a number of columns. The number of columns include a number of first columns and a number of second columns arranged alternately. The pixel units arranged in the number of first columns are controlled via the first scanning line, and the two pixel units arranged in each of the number of second columns are controlled via the two second scanning lines correspondingly.
Abstract:
The present invention relates to a TFT substrate and a manufacture method thereof. The TFT substrate includes a substrate, a plurality of signal lines, a common electrode, and a pixel electrode. The signal lines are arranged on the substrate along two perpendicular directions. One of two signal lines perpendicular to each other includes a plurality of segments. Every two segments closed to each other are arranged on two opposite sides of the other signal line of the two signal lines. The TFT substrate further includes a connecting signal line. The connecting signal line is connected to the two segments of the signal line composing a plurality of segments. The common electrode is arranged in a same layer as the connecting signal line and overlaps the signal line transferring image signals along a direction perpendicular to the substrate.
Abstract:
An exemplary TFT array substrate includes an insulating substrate, a gate electrode provided on the insulating substrate, a gate insulating layer covering the gate electrode and the insulating layer, an amorphous silicon (a-Si) pattern formed on the gate insulating layer, a heavily doped a-Si pattern formed on the a-Si pattern, a source electrode formed on the gate insulating layer and the heavily doped a-Si pattern and a drain electrode formed on the gate insulating layer and the heavily doped a-Si pattern. The source electrode and the drain electrode are isolated by a slit formed between the source electrode and the drain electrode, and the a-Si pattern includes a high resistivity portion corresponding to the slit whose resistance is higher than a resistance of the a-Si material.
Abstract:
An exemplary electrostatic discharge protection device includes: an electrostatic discharge part configured for discharging electrostatic when the electrostatic is larger than a threshold value; and a light emitting part configured for emitting light when electrostatic discharge happens.
Abstract:
An exemplary display device (2) includes a display body (22) and a support body (23) configured for supporting and moving the display body. The support body includes at least one trolley wheel assembly (28) capable of moving horizontally, and at least one stopper (380) corresponding to the trolley wheel assembly, which is capable of braking the trolley wheel assembly. The display body is moved horizontally when the trolley wheel assembly is moved horizontally.
Abstract:
An embedded system includes a first wireless node and a number of second wireless nodes, each of which includes a wireless transceiver, a memory storing a schedule defining transmission and reception of test packets, and a processor transmitting and receiving the test packets responsive to the schedule. The memories store a corresponding predetermined application employing some of the wireless communications, and a corresponding predetermined measurement function measuring wireless communication performance. A corresponding one of the schedules is executed by the corresponding predetermined measurement function. The second wireless nodes wait to receive a number of the test packets before being synchronized with their schedule and receiving and transmitting the test packets according to their schedule. The processors store data from the test packets to assess wireless communication performance between corresponding nodes.
Abstract:
An exemplary method for manufacturing a thin film transistor includes: forming at least two photo-resist layers on a substrate, a developing speed of an upper one of the photo-resist layers being less than that of each photo-resist layer below said upper one of the photo-resist layers; exposing and developing the photo-resist layers, thereby forming residual photo-resist layers having a reduced width from top to bottom; subsequently depositing a plurality of metal layers on the substrate having the residual photo-resist layers; removing the residual photo-resist layers and the metal layers deposited on the photo-resist layers, thereby forming a gate electrode which includes residual metal layers and which has an increased width from top to bottom; forming a gate insulation layer on the substrate having the gate electrode; forming a semiconductor layer on the gate insulation layer; and forming a source electrode and a drain electrode on the semiconductor layer.
Abstract:
An exemplary TFT substrate (300) includes a substrate (310), a silicon layer (320), a insulating layer (330, 340), and a metal layer (350), the metal layer, the insulating layer, the silicon layer being formed on the substrate in that order from top to bottom. The insulating layer comprises a first insulating layer (330) and a second insulating (340), the second insulating layer covering part of the first insulating layer.