Abstract:
An insulated electric wire includes a conductor and an insulating coating provided around a perimeter of the conductor. The insulating coating includes a first insulating coating film around the perimeter of the conductor, the first insulating coating film being formed of a resin containing an imide structure in its molecule, and a second insulating coating film around a perimeter of the first insulating coating film, the second insulating coating film being formed of a polyimide resin comprising a repeat unit represented by Formula 1, and having an imide concentration of not less than 15% and not more than 36%, wherein R1 is a tetravalent group derived from decarboxylation of an aromatic tetracarboxylic acid, and R2 is a divalent group derived from deamination of an aromatic diamine.
Abstract:
The adhesive film includes an insulating film, an adhesive layer provided over one side of the insulating film, and an anchor coat layer provided between the one side of the insulating film and the adhesive layer. The adhesive layer is a copolymer polyamide resin which is soluble in a solvent at 25 degrees Celsius and has a melting point of 100 degrees Celsius or more and 150 degrees Celsius or less. The anchor coat layer enhances the adhesion between the insulating film and the adhesive layer.
Abstract:
It is an objective of the present invention to provide an insulated wire having partial discharge resistance comparable to or higher than those of conventional insulated wires even in unstable operating environments. There is provided an insulated wire including: a wire conductor; a first insulation coating formed around the wire conductor, the first insulation coating including inorganic fine particles dispersed therein; and a second insulation coating formed between the first insulation coating and the wire conductor, a relative dielectric constant of the second insulation coating being lower than that of the first insulation coating.
Abstract:
A metal fine particle includes one amine compound, and one compound causing an alkylation of the amine compound. The amine compound and the alkylation causing compound cover a surface of the metal fine particle. The alkylation causing compound includes an alkyl halide compound. The alkyl halide compound includes one of iodomethane, iodoethane, 1-iodopropane, 2-iodopropane, 1-iodobutane, 1-iodo-2-methylpropane, 1-iodopentane, 1-iodo-3-methylbutane, 1-iodohexane, 1-iodoheptane, 1-iodooctane, 1-iodononane, 1-iododecane, 1-iodoundecane, 1-iodododecane, 1-iodotridecane, 1-iodotetradecane, 1-iodopentadecane, 1-iodohexadecane, 1-iodoheptadecane, 1-iodooctadecane, 1-iodononadecane, and 1-iodoeicosane.
Abstract:
A method of manufacturing an ultraviolet cross-linked foam insulated wire includes dissolving a gas in an ultraviolet curable resin composition, subsequently applying the ultraviolet curable resin composition on a conductor, and irradiating ultraviolet light on the ultraviolet curable resin composition to form a foam insulation layer on the conductor. The irradiating of ultraviolet light allows the resin composition to cure and bubbles to grow due to a decrease in solubility of the gas in the resin composition during the curing of the resin composition.
Abstract:
A composite metal fine particle material is provided, in which spherical silver nanoparticles synthesized from a silver compound, a solvent, a reducing agent, and a dispersant, and conductive fillers compose of non-spherical metal fine particles, are mixed. For example, the conductive fillers composed of the non-spherical metal fine particles are formed into slender columnar shapes, plate shapes, or ellipsoidal shapes.
Abstract:
There is provided an insulated wire equipped with an insulation film made of polymer alloy, the polymer alloy comprising an amorphous thermosetting resin and an amorphous thermoplastic resin, in which: the insulation film has a sea-island structure; the amorphous thermosetting resin is a sea component of the sea-island structure; and the amorphous thermoplastic resin is an island component of the sea-island structure.
Abstract:
A cable-type load sensor comprises two conductors arranged in parallel; and an elastic cladding layer with which surroundings of two conductors are covered. Each of two conductors comprises at least one of a nickel chromium system alloy, an iron nickel system alloy, a copper nickel system alloy, and a nickel titanium system alloy.
Abstract:
A cord switch includes a hollow insulation having a restoring force, a plurality of inner electrode wires provided along an inner surface of the hollow insulation, and an outer electrode provided on an outer surface of the hollow insulation. The outer electrode includes a plurality of outer electrode wires wounded on the outer surface of the hollow insulation, the outer electrode wires each including a copper wire and a plated layer formed on a surface of the copper wire, and the plated layer includes a transition metal except cobalt, manganese, copper, iron and vanadium, or a typical metal.
Abstract:
An impulse sensor having: a long elastic structure formed of a material to be deformed according to an impulse; a cable insertion hole formed in the elastic structure; and a cable inserted through the cable insertion hole, the cable being operable to cause a variation in propagation energy due to its deformation. A distance from a central line of the cable to an outer surface of the elastic structure is varied in a longitudinal direction of the elastic structure.