WIRELESS POWER TRANSFER VIA ELECTRODYNAMIC COUPLING

    公开(公告)号:US20220247213A1

    公开(公告)日:2022-08-04

    申请号:US17719472

    申请日:2022-04-13

    Abstract: Wireless power transmission (WPT) systems are provided. For example, the WPT system can use one or more power transmitting coils and a receiver for electromagnetically coupled wireless power transfer. The electrodynamic receiver can be in the form of an electrodynamic transducer where a magnet is allowed to oscillate near a receiving coil to induce a voltage in the receiving coil, a piezoelectric transducer where the magnet causes a vibrating structure with a piezoelectric layer to move, an electrostatic transducer where movement of the magnet causes a capacitor plate to move, or a combination thereof. An alternating magnetic field from the transmitting coil(s) excites the magnet in the receiver into mechanical resonance. The vibrating magnet then functions similar to an energy harvester to induce voltage/current on an internal coil, piezoelectric material, or variable capacitor. Embodiments utilize magnetic coupling and electromechanical resonance for safe, spatially distributed, low-frequency power delivery to portable devices.

    Memristive learning for neuromorphic circuits

    公开(公告)号:US11341408B2

    公开(公告)日:2022-05-24

    申请号:US16345533

    申请日:2017-10-27

    Abstract: Memristive learning concepts for neuromorphic circuits are described. In one example case, a neuromorphic circuit includes a first oscillatory-based neuron that generates a first oscillatory signal, a diode that rectifies the first oscillatory signal, and a synapse coupled to the diode and including a long-term potentiation (LTP) memristor arranged in parallel with a long-term depression (LTD) memristor. The circuit further includes a difference amplifier coupled to the synapse that generates a difference signal based on a difference between output signals from the LTP and LTD memristors, and a second oscillatory-based neuron electrically coupled to the difference amplifier that generates a second oscillatory signal based on the difference signal. The circuit also includes a feedback circuit that provides a feedback signal to the LTP and LTD memristors based on a difference or error between a target signal and the second oscillatory signal.

    INTRAVENOUS TUBING VENTING ASSEMBLY

    公开(公告)号:US20220143327A1

    公开(公告)日:2022-05-12

    申请号:US17453420

    申请日:2021-11-03

    Abstract: Provided herein is a method and apparatus for venting of intravenous tubing to remove air bubbles, and more particularly, to a venting valve that allows air bubbles to escape along a venting path while not permitting fluid passage through the venting path. An example air extraction device may include: a chamber; a fluid inlet to convey fluid from intravenous tubing into the chamber; a fluid outlet to convey fluid from the chamber to intravenous tubing for supplying to a patient; a top portion of the chamber; a branch tube extending from the top portion of the chamber, where the branch tube receives air from the fluid in the chamber; and a ball received within the chamber, where the ball is configured to rise with an influx of fluid to the chamber from the fluid inlet and to seal off the branch tube from the chamber in response to the fluid level rising to the top portion of the chamber.

    Metamaterial-inspired dual-function loop antenna

    公开(公告)号:US11329517B2

    公开(公告)日:2022-05-10

    申请号:US17215798

    申请日:2021-03-29

    Abstract: The present disclosure describes various embodiments of systems, apparatuses, and methods of fabricating a metamaterial-inspired dual-function loop antenna. One such antenna device comprises a loop antenna and a metamaterial slab integrated on top of the loop antenna. Accordingly, the metamaterial slab metamaterial has a negative refractive index value at a first frequency and a near zero refractive index at a second frequency, wherein the first frequency is less than the second frequency, each unit cell of the metamaterial slab is coupled to a capacitor in parallel, the first frequency is attributed to a capacitance value of the capacitor, and the second frequency is attributed to a dimension of the unit cell. As such, the antenna device is configured to receive wireless power transfer signals over the first frequency and wireless communication signals over the second frequency. Other apparatuses, systems, and methods are also presented.

Patent Agency Ranking