Abstract:
A battery includes a case housing an electrode assembly, the case having an opening for receiving the electrode assembly, a cap plate combined with the opening so as to close the case, a first insulator on an outer surface of the cap plate, an electrode terminal electrically connected to the electrode assembly, the electrode terminal extending through a first terminal hole in the cap plate and a second terminal hole in the first insulator, a first connection portion that mates the cap plate to the first insulator so as to oppose rotation of the first insulator relative to the cap plate, the first connection portion being eccentric with respect to a central line of the first terminal hole, and a second connection portion that mates the first insulator to the electrode terminal so as to oppose rotation of the electrode terminal relative to the first insulator.
Abstract:
Provided is an organic light emitting display apparatus in which process efficiency and contrast are increased. The organic light emitting display apparatus includes a substrate, a display unit that is formed on the substrate and includes an organic light emitting device, an encapsulation layer that is formed on the display unit so as to encapsulate the display unit, a color filter layer that is formed on the encapsulation layer, a protection layer that is formed on the color filter layer, and a black matrix that is formed on the protection layer. The black matrix is aligned not to overlap the color filter layer.
Abstract:
A semiconductor device is provided. The semiconductor device includes a semiconductor substrate including a conducting layer, a first insulating film formed on the semiconductor substrate and having a via hole formed therein, a lower barrier film formed on an inside wall of the via hole, a first metal wiring formed on the lower barrier film, a second insulating film formed on the first metal wiring and the first insulating film, the second insulating film being provided with a trench which has a width greater than a width of the via hole, an upper barrier film formed on a lower surface of the trench, a second metal wiring formed on the upper barrier film, and a sidewall barrier film formed on sidewalls of the upper barrier film and the second metal wiring. The sidewall barrier film has an L-shaped mirror-symmetrical structure.
Abstract:
An OLED display includes a substrate on which OLEDs are formed, a TFE layer formed on the substrate so as to cover the OLEDs, and absorbers disposed at a distance from each other and preventing or inhibiting penetration of external foreign materials.
Abstract:
An organic light-emitting display apparatus for encapsulating an organic light-emitting device and/or improving its electrical properties. The organic light-emitting display apparatus includes: a substrate; a display portion on the substrate and including an organic light-emitting device; a non-display portion on both the substrate and the peripheral region of the display portion; and an encapsulation portion on the display portion and including a first encapsulation layer formed of an inorganic material and a second encapsulation layer formed of an organic material that are alternately stacked on the display portion, wherein an end portion of the first encapsulation layer contacts the substrate.
Abstract:
A battery module according to the present invention includes rechargeable batteries that include a first terminal and a second terminal which protrude outward, the first terminal including differentiation portions formed of an indentation or a protruding portion to differentiate the first terminal from the second terminal; and connection members that electrically connect the rechargeable batteries, fixed to the first and second terminals of adjacent rechargeable batteries, including verification portions which fit the differentiation portions so as to improve assemblability and minimize contact resistance.
Abstract:
Disclosed is a method for manufacturing a semiconductor device including a low-voltage MOS transistor and a high-voltage MOS transistor. The present method includes a low-voltage well implantation process on a semiconductor substrate to form a first well in a first region of the substrate and a second well in a second region of the substrate; forming first and second gate oxide layers and first and second gate electrodes in the first and second regions, respectively; forming a first photoresist pattern to expose the first region; forming a first LDD region in the first region exposed by the first photoresist pattern and the first gate electrode; removing the first photoresist pattern; forming a second photoresist pattern to expose the second region; forming a second LDD region in the second region exposed by the second photoresist pattern and the second gate electrode; performing a compensational implantation on the second region to adjust a well concentration for the high-voltage MOS transistor; and removing the second photoresist pattern.
Abstract:
A test carrier includes an insert body, a first latch assembly including one or more first latches pivotally attached to the insert body, and a second latch assembly including one or more second latches pivotally attached to the insert body. The second latch assembly is configured to engage with an external connection terminal array of an electronic component during testing thereof. A method of testing a semiconductor device and a system for testing a semiconductor device are also provided.
Abstract:
Provided is a method and an apparatus for vocal-cord signal recognition. A signal processing unit receives and digitalizes a vocal cord signal, and a noise removing unit which channel noise included in the vocal cord signal. A feature extracting unit extracts a feature vector from the vocal cord signal, which has the channel noise removed therefrom, and a recognizing unit calculates a similarity between the vocal cord signal and the learned model parameter. Consequently, the apparatus is robust in a noisy environment.
Abstract:
An image sensor according to embodiments may include a first substrate having photodiode cells, a second substrate having a logic circuit, and connection electrodes that may electrically connect the photodiode cells with the logic circuit. In embodiments, more area may be available on the first substrate for photodiode cells and light loss may be reduced.