Abstract:
A touch panel includes a substrate, a conductive circuit layer, a resistive layer and a dielectric layer. The substrate has a touch area and a peripheral area surrounding the touch area. The conductive circuit layer is formed on the peripheral area of the substrate. The resistive layer covers the conductive circuit layer and the touch area of the substrate. The dielectric layer is formed on the resistive layer. The conductive circuit layer includes a plurality of signal terminals disposed on corner surfaces of the substrate as the corner electrodes of the conductive circuit layer.
Abstract:
Methods of using inhibitors (including monoclonal antibodies) directed against amyloid-beta peptide for the treatment of ophthalmic diseases such as age-related macular degeneration are described.
Abstract:
An exemplary electronic device (10) comprises a display (11), a chip controller (131), a power supply (14) and a main processor (12). The display has a surface acoustic touch screen (111). The touch screen comprises a substrate (113), two transmitting transducers (114), two receiving transducers (115), two first reflection strips (116), and two second reflection strips (117). The transmitting transducers and the receiving transducers are disposed on the substrate. The power supply is electrically connected to and controlled by the chip controller. The main processor is electrically connected to the transmitting transducers, the receiving transducers, and the chip controller. The main processor is used to contain a start operational input and calculate a touched signal that the touch screen touched. The main processor further compares the touched signal with the start operational input to decide whether to send a start instruction the chip controller to start the electronic device.
Abstract:
A high-efficiency light-emitting element includes a substrate, a first nitride semiconductor layer formed on the substrate, a nitride light-emitting layer formed on the first nitride semiconductor layer, and a second nitride semiconductor layer formed on the nitride light-emitting layer including a plurality of hexagonal-pyramid cavities on the surface of the second nitride semiconductor layer opposite to the nitride light-emitting layer.
Abstract:
A method for verifying scan precision of a laser measurement machine includes the steps of: preparing a standardized 3D profile model; determining an ideal curved surface as a conventional true value of the standardized 3D profile model; scanning the standardized 3D profile model by the laser measurement machine and obtaining point cloud data; calculating a bias between each point in the point cloud and the ideal curved surface; evaluating the veracity of the laser measurement machine by using the largest bias; and evaluating the receptiveness of the laser measurement machine.
Abstract:
A method for verifying scan precision of a laser measurement machine includes the steps of: preparing a standardized BGA model; measuring Z coordinates values of each solder ball peak of the BGA model for certain times; determining a Z coordinates conventional true value of each solder ball peak; measuring X, Y coordinates values of each solder ball centre of the BGA model; determining a coplanarity conventional true value of a seating-plane; determining an optimum scanning mode; determining optimum scanning parameters under the optimum scanning mode; scanning the BGA model under the optimum scanning parameters and the optimum scanning mode; obtaining X, Y, Z coordinates values of each solder ball peak; evaluating the veracity of Z coordinates of each solder ball peak; evaluating the veracity and repetitiveness of coplanarity; and evaluating scan precision of the laser measurement machine.
Abstract:
A sound-absorbing composite material includes a super thin fiber layer, and a non-woven fiber layer laminating the super thin fiber layer. Thus, the super thin fiber layer co-operates with the non-woven fiber layer to provide a better sound-absorbing effect, thereby enhancing the sound-absorbing effect of the sound-absorbing composite material. In addition, the super thin fiber layer is rested on and attached to the non-woven fiber layer which provides support to the super thin fiber layer to enhance the strength of the super thin fiber layer, so that the super thin fiber layer is not easily worn out when in use, thereby enhancing the lifetime of the sound-absorbing composite material.