Abstract:
Techniques are disclosed for correcting artifacts in multi-view images that include a plurality of planar views. Image content the planar views may be projected from the planar representation to a spherical projection. Thereafter, a portion of the image content may be projected from the spherical projection to a planar representation. The image content of the planar representation may be used for display. Extensions are disclosed that correct artifacts that may arise during deblocking filtering of the multi-view images.
Abstract:
Techniques are described for implementing format configurations for multi-directional video and for switching between them. Source images may be assigned to formats that may change during a coding session. When a change occurs between formats, video coders and decoder may transform decoded reference frames from the first format to the second format. Thereafter, new frames in the second configuration may be coded or decoded predictively using transformed reference frame(s) as source(s) of prediction. In this manner, video coders and decoders may use intra-coding techniques and achieve high efficiency in coding.
Abstract:
Embodiments of the present disclosure provide systems and methods for perspective shifting in a video conferencing session. In one exemplary method, a video stream may be generated. A foreground element may be identified in a frame of the video stream and distinguished from a background element of the frame. Data may be received representing a viewing condition at a terminal that will display the generated video stream. The frame of the video stream may be modified based on the received data to shift of the foreground element relative to the background element. The modified video stream may be displayed at the displaying terminal.
Abstract:
Multi-directional image data often contains distortions of image content that cause problems when processed by video coders that are designed to process traditional, “flat” image content. Embodiments of the present disclosure provide techniques for coding multi-directional image data using such coders. For each pixel block in a frame to be coded, an encoder may transform reference picture data within a search window about a location of the input pixel block based on displacement respectively between the location of the input pixel block and portions of the reference picture within the search window. The encoder may perform a prediction search among the transformed reference picture data to identify a match between the input pixel block and a portion of the transformed reference picture and, when a match is identified, the encoder may code the input pixel block differentially with respect to the matching portion of the transformed reference picture. The transform may counter-act distortions imposed on image content of the reference picture data by the multi-directional format, which aligns the content with image content of the input picture. The techniques apply both for intra-coding and inter-coding.
Abstract:
Embodiments of the present disclosure provide systems and methods for background concealment in a video conferencing session. In one exemplary method, a video stream may be captured and provided to a first terminal participating in a video chat session. A background element and a foreground element may be determined in the video stream. A border region may additionally be determined in the video stream. The border region may define a boundary between the foreground element and the background element. The background region may be modified based, at least in part, on video content of the border region. The modified video stream may be transmitted to a second terminal participating in the video conferencing session.
Abstract:
Techniques are disclosed for selecting deblocking filter parameters in a video decoding system. According to these techniques, a boundary strength parameter may be determined based, at least in part, on a bit depth of decoded video data. Activity of a pair of decoded pixel blocks may be classified based, at least in part, on the determined boundary strength parameter, and when a level of activity indicates that deblocking filtering is to be applied to the pair of pixel blocks, pixel block content at a boundary between the pair of pixel blocks may be filtered using filtering parameters derived at least in part based on the bit depth of the decoded video data. The filtering parameters may decrease strength with increasing bit depth of the decoded video data, which improves quality of the decoded video data.
Abstract:
Video coders may perform perspective transformation of reference frames during coding in a manner that conserves processing resources. When a new input frame is available for coding, a camera position for the input frame may be estimated. A video coder may search for reference pictures having similar camera positions as the position of the input frame and, for each reference picture identified, the video coder may perform a prediction search to identify a reference picture that is the best prediction match for the input frame. Once the video coder identifies a reference picture to serve as a prediction source for the input frame, the video coder may derive a transform to match the reference frame data to the input frame data and may transform the reference picture accordingly. The video coder may code the input frame using the transformed reference picture as a prediction reference and may transmit coded frame data and the camera position of the input frame to a decoder. Thus, the video coder may perform derivation and execution of transforms on a limited basis which conserves system resources.
Abstract:
Methods are described for encoding and decoding blocks of image data using intra block copying (IBC). A source block for intra block copying is selected from a source region of a current image that is closer to the current block than a threshold, wherein the source region does not include a portion of the current image that is further from the current block than the threshold.
Abstract:
Coding techniques for input video may include assigning picture identifiers to input frames in either long-form or short-form formats. If a network error has occurred that results in loss of previously-coded video data, a new input frame may be assigned a picture identifier that is coded in a long-form coding format. If no network error has occurred, the input frame may be assigned a picture identifier that is coded in a short-form coding format. Long-form coding may mitigate against loss of synchronization between an encoder and a decoder by picture identifiers.
Abstract:
Methods and systems provide efficient sample adaptive offset (SAO) signaling by reducing a number of bits consumed for signaling SAO compared with conventional methods. In an embodiment, a single flag is used if a coding unit to a first scanning direction with respect to a given coding unit is off. In an embodiment, further bits may be saved if some neighboring coding units are not present, i.e. the given coding unit is an edge. For example, a flag may be skipped, e.g., not signaled, if the given coding unit does not have a neighbor. In an embodiment, a syntax element, one or more flags may signal whether SAO filtering is performed in a coding unit. Based on the syntax element, a merge flag may be skipped to save bits. In an embodiment, SAO syntax may be signaled at a slice level.