Abstract:
The present disclosure relates to the field of display technology, and discloses a substrate and a method for fabricating the same, and a display device. The substrate includes a plurality of players of conductive lines arranged on a base, and adjacent two layers of conductive lines are arranged with a signal shielding layer there between to eliminate signal crosstalk between the adjacent two layers of conductive lines. And in the direction of arrangement of the same layer of conductive lines, projections of regions of distribution of adjacent two layers of conductive lines on the base are at least partially overlapped with each other.
Abstract:
An apparatus and a method for implementing touch feedback is provided. The method for implementing touch feedback includes determining a touch region corresponding to a touch operation in response to the touch operation on a touch display device, processing an image to be displayed based at least in part on the touch region wherein the processing includes adjusting image features of the image to be displayed in the touch region, and displaying the processed image to be displayed on the touch display device.
Abstract:
The present disclosure provides a liquid crystal grating, a display device and a display method. The liquid crystal grating includes a first electrode arranged on a first substrate and a second electrode arranged on a second substrate. The first electrode includes at least two sub-electrode layers. Each sub-electrode layer includes a plurality of sub-electrodes spaced apart from, and arranged parallel to, each other. A gap between every two adjacent sub-electrodes of one sub-electrode layer is capable of being covered by projections of the sub-electrodes of the other sub-electrode layer onto the one sub-electrode layer.
Abstract:
A panel and a manufacturing method thereof are provided. The panel includes a base substrate, and a black matrix layer, a first organic insulating layer and a second organic insulating layer, which are sequentially disposed on the base substrate. The black matrix layer includes a first groove penetrating through the black matrix layer; the first organic insulating layer includes a second groove penetrating through the first organic insulating layer; the second organic insulating layer includes a third groove penetrating through the second organic insulating layer; and the first groove, the second groove and the third groove are interpenetrated with one another.
Abstract:
The present application discloses a touch substrate including a base substrate; a black matrix layer on the base substrate in a black matrix area of the touch substrate; and a touch electrode layer on a side of the black matrix layer distal to the base substrate in a touch electrode area of the touch substrate. The touch electrode area partially overlaps with the black matrix area thereby forming an overlapping area. The touch electrode layer includes a plurality of touch electrode blocks at least partially in the overlapping area. A touch electrode block at least partially in the overlapping area is spaced apart from adjacent touch electrode blocks by a first gap. The black matrix layer in at least a portion of a region on a side of the first gap proximal to the base substrate has a reduced thickness relative to a thickness of a remaining portion of the black matrix layer.
Abstract:
A touch structure includes a base substrate, an insulating layer disposed thereon, a first touch electrode and a second touch electrode intersecting each other, and a first signal transmission structure electrically connected with the first touch electrode. The insulating layer includes a first section that is disposed at the intersecting position of the first touch electrode and the second touch electrode and is located between the first touch electrode and the second touch electrode to insulate same from each other, and a second section that is disposed at the same layer as the first section and covers the first signal transmission structure.
Abstract:
The present invention disclose a touch electrode structure and a fabricating method thereof, a capacitive touch device and a touch display device to improve the touch linearity and the report rate of the capacitive touch device. The touch electrode structure provided by the embodiments of the present invention comprises a plurality of electrode assemblies and a plurality of electrode pins for connecting a touch circuit. Wherein, each electrode assembly comprises two electrodes which are disposed at the same layer, insulated from each other and cross with each other complementarily, and each electrode comprises at least two sub-electrodes which are in mutual electrical connection with each other. The sub-electrodes of different electrodes of each electrode assembly are spaced apart from each other one by one, and each electrode is connected with an electrode pin.
Abstract:
A testing probe and a testing apparatus are disclosed. The testing probe including: a housing, including a test end and a fixed end, and with a test opening at the test end; a piston, being capable of sliding between the test end and the fixed end along an inner wall of the housing, and a conductive adhesive agent chamber being formed by the piston and the fixed end of the housing and being configured to be filled with a conductive adhesive agent; and the conductive adhesive agent being allowed to overflow from a gap between the piston and the inner wall of the housing by squeezing the piston; an elastic member with a first end fixed to the piston and a second end extending toward the test end; a sphere being disposed at the test opening and separated from the second end of the elastic member by a preset distance.
Abstract:
An embodiment of the present invention discloses a capacitive touch panel, which is provided with an electrostatic protection touching layer, the electrostatic protection touching layer comprises a touching array pattern and an electrostatic protection discharging pattern, and the electrostatic protection discharging pattern is disposed in a space of the touching array pattern, complementing with the touching array pattern. The capacitive touch panel of the embodiment of the present invention, reduces the thickness of touch panel, and saves the material by forming the electrostatic protection layer and the touch sensing layer on one layer, which realizes the touching sense as well as the electrostatic protection, eliminates the capacitance between the electrostatic protection layer and the touch sensing layer, and improves the sensitivity of touching sense.
Abstract:
The present invention provides array substrate, manufacturing method thereof, and display device, relating to manufacturing technology field of liquid crystal display. The array substrate of the present invention includes: a base substrate, on which a plurality of gate lines and a plurality of data lines are provided; shielding electrodes, which are provided above and electrically insulated from the data lines, and the shielding electrodes at least partially cover the data lines; first electrodes, which are provided in the same layer as the shielding electrodes and are electrically insulated from the shielding electrodes; second electrodes, which are provided above and electrically insulated from the first electrodes, wherein, the shielding electrodes are applied with a shielding voltage signal, the second electrodes are applied with a stable voltage signal, and no electric field or weak electric filed is formed between the shielding electrodes and the second electrodes.