Abstract:
A pixel arrangement structure for a display device. The pixel arrangement structure may comprise a first pixel and a second pixel. The first pixel and the second pixel are alternately in a row direction and a column direction. The first pixel and the second pixel each comprise a first sub-pixel, a second sub-pixel, and a third sub-pixel. The first sub-pixel, the second sub-pixel, and the third sub-pixel in the first pixel form a triangular distribution. The first sub-pixel, the second sub-pixel, and the third sub-pixel in the second pixel form an inverted triangular distribution relative to the triangular distribution in the first pixel. The second sub-pixel and the third sub-pixel in each of the first pixel and the second pixel are located on substantially the same row.
Abstract:
The present invention discloses a structure of pixel arrangement and a display device. The structure of pixel arrangement includes a first sub-pixel, and second sub-pixels and third sub-pixels that are provided surrounding the first sub-pixel, the first sub-pixel, portions of the second sub-pixels and portions of the third sub-pixels constituting a virtual rhombus, wherein a center of the first sub-pixel coincides with a center of the virtual rhombus; a center of the second sub-pixel coincides with a first vertex of the virtual rhombus; and a center of the third sub-pixel coincides with a second vertex of the virtual rhombus. Compared with the prior art, the number of sub-pixels required to achieve high resolution display in the present invention is smaller, so that the number of the sub-pixels is decreased.
Abstract:
The present disclosure provides a pixel structure, a display panel, and a display apparatus. The pixel structure includes a plurality of pixel cells having a first pixel cell and a first adjacent pixel cell. Each pixel cell includes a first pixel; and two second pixels and two third pixels, surrounding the first pixel. Each of the two second pixels and the two third pixels is arranged separately in a direction along a side of a virtual rectangular area, the first pixel corresponding to one portion of the virtual rectangular area. Each of the two second pixels and the two third pixels has a first portion arranged in the first pixel cell covered by a first virtual rectangular area, and a second portion arranged in the first adjacent pixel cell covered by a second virtual rectangular area.
Abstract:
Embodiments of the present invention provides an array substrate. The array substrate includes a display region and a packaging region. The packaging region includes a plurality of functional layers. And the packaging region further includes: a plurality of through holes running through at least one of the plurality of functional layers and configured to allow a packaging adhesive to enter therein; and a groove formed above at least some of the through holes, wherein, projection areas of the at least some of the through holes onto a base substrate of the array substrate are located within a projection area of the groove onto the base substrate. Embodiments of the present invention further provides a display panel and a display apparatus including the abovementioned array substrate, and a method of manufacturing the abovementioned array substrate.
Abstract:
A top-emitting organic electroluminescent display panel, a manufacturing method, and a display device. The top-emitting organic electroluminescent display panel comprises: a substrate, a layer of white organic light emitting diodes and a thin film encapsulation layer arranged on the substrate in sequence. The thin film encapsulation layer comprises at least two inorganic thin film layers and at least one organic thin film layer. At least one organic thin film layer is a color filter layer, the color filter layer being arranged between the at least two inorganic thin film layers. Since one of the organic thin film layers in the thin film encapsulation layer is a color filter layer, the color filter layer does not have to be arranged above the thin film encapsulation layer separately, thus reducing the number of film lavers, simplifying the film layer structure, reducing manufacturing costs, and improving the luminous efficiency and the display effect.
Abstract:
A pixel driving circuit, array substrate and display apparatus, comprise: data line for providing data voltage; gate line for providing scanning voltage; first power supply line for providing first power supply voltage; second power supply line for providing second power supply voltage; light emitting device connected to second power supply line; driving transistor connected to first power supply line; storage capacitor having first terminal connected to gate of driving transistor and configured to transfer information to gate of driving transistor; resetting unit configured to reset voltage across storage capacitor as predetermined signal voltage; data writing unit configured to write information into second terminal of storage capacitor; compensating unit configured to write information into first terminal of storage capacitor; and light emitting control unit configured to write first power supply voltage into second terminal of storage capacitor and control driving transistor to drive light emitting device to emit light.
Abstract:
Provided are anthracene derivative, method for preparing the same, use thereof, and an organic light emitting device. The anthracene derivative represented by a formula:
Abstract:
Provided are a threshold voltage compensation circuit of TFT and a method for the same, a shift register and a display device. The threshold voltage compensation circuit includes an input terminal, an output terminal connected to the source of the thin film transistor, a first resistor to a Kth resistor connected in series, and Kth connectable link and at least one first connectable link. Since a voltage dividing circuit having connectable links divides the voltage input to the source of the thin film transistor, such that the gate-source voltage of the thin film transistor can be changed by changing the voltage of the source of the thin film transistor when the voltage of the gate of the thin film transistor is maintained unchanged, so as to control a leakage current of the thin film transistor under a turn-off state, such that the thin film transistor can be turned off normally.
Abstract:
A display substrate and a display device are provided. The display substrate includes a plurality of repeat units. Each of the plurality of repeat units includes one first-color sub-pixel, one second-color sub-pixel pair and one third-color sub-pixel which are arranged in a first direction, the second-color sub-pixel pair includes two second-color sub-pixels arranging in a second direction. Connecting lines of centers of orthographic projections of light-emitting regions of four second-color sub-pixels on the base substrate form a first trapezoid, and at least one edge of the first trapezoid is located outside orthographic projections of light-emitting regions of respective sub-pixels on the base substrate.
Abstract:
The present application provides a pixel driving circuit, a control method thereof, and a display device, which relates to the technical field of display. The pixel driving circuit is configured to drive a light emitting diode to emit light at different refresh rates, and includes: a first control module, a second control module, a compensation module, a refresh module, a first reset module, a first light emitting control module, a driving module, and a second light emitting control module. By holding potentials of a first node and a second node, the pixel driving circuit according to the present application may operate at different refresh rates, and the problem of insufficient Vth capture time is effectively solved.