Abstract:
A surgical fastener deployment system may include a plurality of coil fasteners having a head and coil body. In one embodiment, the head may be larger in diameter than the coil body. The fasteners may also be mounted on a guide rod or mandrel that passes through a through-hole of the head and the coil body. The shaft may also include a guiding element that contacts and stabilizes the coil body as the fastener is deployed from a distal end of the shaft. When the head approaches and contacts the guiding element, the guiding element may deflect to permit the head to pass.
Abstract:
A surgical instrument and its method of use are disclosed. In one embodiment, the surgical instrument may include a handle and an elongated shaft assembly extending distally from the handle. The elongated shaft assembly may include an articulable portion with an articulation direction. The elongated shaft assembly may also include a tubular member with a flexible portion with a preferential bending direction and a direction of bending resistance. The tubular member may permit articulation of the elongated shaft assembly when the preferential bending direction is aligned with the articulation direction.
Abstract:
A method of transfascial suturing may include delivering a suture assembly into an abdominal cavity of a patient, passing a suture anchor, from within the abdominal cavity, through a soft tissue repair prosthetic provided in the abdominal cavity and then through the abdominal wall to a location either above or below the skin, and tightening the suture assembly. An instrument for transfascial suturing may include a handle, a shaft extending from the handle, and a drive system for advancing a suture or suture assembly out of the instrument and across the fascia. The instrument may advance a suture anchor and a suture from within the abdominal cavity and across the abdominal wall to present the suture anchor on the opposite side of the fascia. The instrument may be adapted to present the suture anchor either above or below the skin surface for subsequent tightening of the suture assembly.
Abstract:
Embodiments of a surgical instrument and its methods of use are disclosed. The disclosed embodiments of a surgical instrument may include a handle and an elongated shaft assembly distally extending from the handle. The elongated shaft assembly may include an articulable portion. An articulation control may be associated with the elongated shaft assembly. The articulation control may be movable between a first position in which the elongated shaft assembly is arranged in a first articulation position and a second position in which the elongated shaft assembly is arranged in a second articulation position. The surgical instrument may include a fastener deployment system with a locking member. The articulation control may block movement of the locking member when the articulation control is located in the first position. The articulation control may also permit movement of the locking member when the articulation control is located in the second position.
Abstract:
Various embodiments of a non-deforming surgical fastener are discussed. In one embodiment, the fastener includes two legs and a backspan extending between the two legs. The fastener also includes a backspan thickness that is adapted to reduce the pressure and/or increase the holding strength applied to underlying materials. The non-deforming fastener is constructed and arranged to retain substantially the same shape before, during and after deployment into the target implantation site.
Abstract:
An instrument for delivering a suture transfascially may include a handle, a shaft extending from the handle, and a pair of needles that are moveable to an extended position beyond the end of the shaft. One or more sutures are carried by the instrument and may be delivered transfascially. A transfascial suture assembly includes a suture having a first segment, a second segment, and an intermediate segment therebetween. A force distributing member is locatable at the intermediate segment. Suture retainers may be provided at the end of each suture segment, and may have a connection that is moveable relative to the portion of the suture segment connected therewith. A method of delivering transfascial sutures includes inserting a twin-needle instrument loaded with one or more sutures into an abdominal cavity and deploying, from within the abdominal cavity, the suture carrying needles through a soft tissue repair patch and then through at least part of the abdominal wall.
Abstract:
Embodiments of a surgical instrument including an actuation lockout system as well as its method of use are disclosed. In one embodiment, a surgical instrument includes a trigger and a driveshaft coupled to the trigger such that actuation of the trigger causes the driveshaft to move from a first position to a second position, thereby resulting in deployment of a surgical fastener. An actuation lockout system restrains distal movement of the driveshaft until a force greater than or equal to a threshold force is applied to the trigger.
Abstract:
An instrument for delivering a suture transfascially may include a handle, a shaft extending from the handle, and a pair of needles that are moveable to an extended position beyond the end of the shaft. One or more sutures are carried by the instrument and may be delivered transfascially. A transfascial suture assembly includes a suture having a first segment, a second segment, and an intermediate segment therebetween. A force distributing member is locatable at the intermediate segment. Suture retainers may be provided at the end of each suture segment, and may have a connection that is moveable relative to the portion of the suture segment connected therewith. A method of delivering transfascial sutures includes inserting a twin-needle instrument loaded with one or more sutures into an abdominal cavity and deploying, from within the abdominal cavity, the suture carrying needles through a soft tissue repair patch and then through at least part of the abdominal wall.
Abstract:
Surgical instruments and their methods of use are disclosed. In some embodiments, the surgical instrument may include a handle and an elongated shaft assembly extending distally from the handle. The surgical instrument may also include a fastener deployment system for deploying fasteners from the elongated shaft assembly including a reciprocating driveshaft disposed within the elongated shaft assembly. The driveshaft may include an internal channel and at least one guide surface shaped and arranged to maintain an orientation of at least one fastener in the channel of the driveshaft. In other embodiments, the fastener deployment system may include a follower disposed within the elongated shaft assembly for displacing one or more fasteners within the elongated shaft assembly towards a distal fastener deployment position.
Abstract:
A surgical instrument including a power assist device, and its method of use for deploying surgical fasteners, is disclosed. The surgical instrument may include a handle, an elongated shaft extending from the handle, and a surgical fastener deployment system including a driveshaft. The driveshaft is actuatable between at least a first proximal position and a second distal position. A striker is movable relative to the driveshaft and an impact surface is associated with the driveshaft. The impact surface is constructed and arranged to be struck by the striker member to displace the driveshaft to the second distal position and deploy the surgical fastener.