摘要:
The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
摘要:
The present invention provides a method for producing silver nanoparticles by employing ethanolamine. The method of this invention can be easily operated and no organic solvent is required. Ethanolamine first reacts with a mixture of poly(oxyalkylene)-amine/epoxy or copolymers of poly(styrene-co-maleic anhydride) (abbreviated as SMA) to generate polymeric polymers. The polymeric polymers then reduce silver ions to silver atoms which are dispersed in the form of silver nanoparticles. Functional groups of the polymeric polymers can chelate with silver ions and be stably compatible with water or organic solvents, whereby the silver nanoparticles can be stably dispersed without aggregation and the produced silver nanoparticles.
摘要:
A phosphorous flame retardant primarily includes hexachlorotriphosphazene (HCP) having poly(oxyalkylene)amine substitutes. The poly(oxyalkylene)amine includes at least two end groups. The phosphorous flame retardant can further include layered silicate clay. The layered silicate clay can be intercalated and modified with the poly(oxyalkylene)amine substitutes of HCP to effectively promote thermal stability. The flame retardant, phosphazene-poly(oxyalkylene)amine adducts, can be applied to a polymer. By the cross-linking between them, the flame-retarding property of the polymer can be improved. Also provided is a method for producing the flame retardant of phosphazene-poly(oxyalkylene)amine adducts and application thereof to a polymer.
摘要:
A CNT-PI complex primarily includes polyimide (PI) and carbon nanotubes (CNT) dispersed in the polyimide. The method for producing the CNT-PI complex first disperses carbon nanotubes in a solvent by adding a dispersant and using an ultrasonic oscillator. Then the carbon nanotubes dispersion is mixed with polyamic acid to give a CNT-PI dispersion. The CNT-PI dispersion is then dried to form a film or layer of the CNT-PI complex. The dispersant used in this invention is an ionic liquid including organic cations and inorganic anions. The produced CNT-PI complex possesses good electromagnetic shielding effectiveness and presents better networked structures and electrical conductivity.
摘要:
The present invention provides a method for controlling toxicity of metallic particles and a low-toxicity composite of metallic nanoparticles and inorganic clay. The metallic nanoparticles are effective in preventing infection and in skinning over, and thus suitable for treating scalds/burns. In the composite, the weight ratio of metallic nanoparticles to inorganic clay preferably ranges 0.1/99.9 to 6.0/94.0 in a size of about 5 to 100 nm. Preferably, the metal is silver and the inorganic clay is nano silicate platelets.
摘要:
The present invention provides a composite of spherical silver nanoparticles and layered inorganic clay. This composite can effectively inhibit the growth of silver-resistant bacteria. The layered inorganic clay serves as carriers of the silver nanoparticles and disperses them. The composite has a particle size of about 5 nm to 100 nm. The silver nanoparticles can be dispersed in an organic solvent or water.
摘要:
The manufacturing process of a material of nanocomposites of the resin includes providing a nano-clay platelets liquid; adding a modification agent into the nano-clay platelets liquid, then stirring in a first time in a first temperature for making a cake product; taking the cake product heated in a second temperature and then crumbling the cake product for making a first powder; moving the water out of the first powder for making a second powder; adding a resin into the second powder, then stirring and baking for making the material of nanocomposites of the resin.
摘要:
A phosphorous flame retardant primarily includes hexachlorotriphosphazene (HCP) having poly(oxyalkylene)amine substitutes. The poly(oxyalkylene)amine includes at least two end groups. The phosphorous flame retardant can further include layered silicate clay. The layered silicate clay can be intercalated and modified with the poly(oxyalkylene)amine substitutes of HCP to effectively promote thermal stability. The flame retardant, phosphazene-poly(oxyalkylene)amine adducts, can be applied to a polymer. By the cross-linking between them, the flame-retarding property of the polymer can be improved. Also provided is a method for producing the flame retardant of phosphazene-poly(oxyalkylene)amine adducts and application thereof to a polymer.
摘要:
The present invention discloses a material of nanocomposites of the resin and its manufacturing process. The manufacturing process comprises the steps of providing a nano-clay platelets liquid; adding a modification agent into the nano-clay platelets liquid, then stirring in a first time in a first temperature for making a cake product; taking the cake product heated in a second temperature then crumbling the cake product for making a first powder; moving the water out of the first powder for making a second powder; adding a resin into the second powder, then stirring and baking for making the material of nanocomposites of the resin.
摘要:
A stably-dispersed composite of metal nanoparticles and inorganic clay and a method for producing the composite, in which interlayered charges of the clay are replaced with the metal ions, which are then reduced to metal particles by a reducing agent. The metal particles will not aggregate together and can be stably uniformly dispersed with particle sizes smaller than conventional metal nanoparticles, and therefore have better antibiotic effect, catalytic ability and other advantages. Antibacterials in a solvent containing 0.01 wt % or more of the metal nanoparticles and inorganic clay are prepared and confirmed to be effective.