Abstract:
An illustrative “VM heartbeat monitoring network” of heartbeat monitor nodes monitors target VMs in a data storage management system. Accordingly, target VMs are distributed and re-distributed among illustrative worker monitor nodes according to preferences in an illustrative VM distribution logic. Worker heartbeat monitor nodes use an illustrative ping monitoring logic to transmit special-purpose heartbeat packets to respective target VMs and to track ping responses. If a target VM is ultimately confirmed failed by its worker monitor node, an illustrative master monitor node triggers an enhanced storage manager to initiate failover for the failed VM. The enhanced storage manager communicates with the heartbeat monitor nodes and also manages VM failovers and other storage management operations in the system. Special features for cloud-to-cloud failover scenarios enable a VM in a first region of a public cloud to fail over to a second region.
Abstract:
Uploads of restored virtual machine (“VM”) data to cloud storage, e.g., VM restore-to-cloud operations, are performed without having to write whole restored virtual disk files to a proxy server before the virtual disk data begins uploading to cloud. Restored data blocks from a backup source are locally cached, staged for efficiency, and asynchronously uploaded to the cloud page-by-page without tapping mass storage resources on the proxy. Downloads of VM data from cloud storage, e.g., VM backup-from-cloud, are performed without having to download a virtual disk file in its entirety to the proxy server before the backup operation begins generating a backup copy. This speeds up “pulling” VM data from the cloud by pre-fetching and locally caching downloaded data blocks. The cached data blocks are processed for backup and stored page-by-page directly into a secondary copy of the cloud VM virtual-disk file without tapping mass storage resource at the proxy.
Abstract:
According to certain aspects, a system includes a client device that includes a virtual machine (VM) executed by a hypervisor, a driver located within the hypervisor, and a data agent. The VM may include a virtual hard disk file and a change block bitmap file. The driver may intercept a first write operation generated by the VM to store data in a first sector, determine an identity of the first sector based on the intercepted write operation, determine an entry in the change block bitmap file that corresponds with the first sector, and modify the entry in the change block bitmap file to indicate that data in the first sector has changed. The data agent may generate an incremental backup of the VM based on the change block bitmap file in response to an instruction from a storage manager, where the incremental backup includes the data in the first sector.
Abstract:
The data storage system according to certain aspects can manage the archiving of virtual machines to (and restoring of virtual machines from) secondary storage. The system may archive virtual machines (VMs) that are determined to have a low level of utilization. The system may create a virtual machine placeholder for an archived VM, which may be a “light” or minimal version of the VM that acts like the actual VM. By using a VM placeholder, a VM may appear to be active and selectable by the user. When the user selects the VM, the VM placeholder can interact with the user in similar manner as the VM. Accessing the VM placeholder may trigger restore of the archived VM from secondary storage. The restore of the archived VM may be “seamless” to the user since the VM remains available while it is being restored.
Abstract:
According to certain aspects, a system may include a computing device configured to: intercept a request from a database application to read a portion of a database file, where a secondary copy of the database file resides on a secondary storage device(s) and is organized as a plurality of first blocks, wherein the request includes a database file offset(s) corresponding to the requested portion; and map the database file offset(s) to a subset of the first blocks that correspond to requested database object(s). The system may include a secondary storage controller computer(s) configured to: access a table that maps the plurality of first blocks to storage locations on the secondary storage device(s); using the table, locate and retrieve the subset of the first blocks on the secondary storage device(s); and forward the retrieved first blocks for storage in a primary storage device(s).
Abstract:
According to certain aspects, a system includes a client device that includes a virtual machine (VM) executed by a hypervisor, a driver located within the hypervisor, and a data agent. The VM may include a virtual hard disk file and a change block bitmap file. The driver may intercept a first write operation generated by the VM to store data in a first sector, determine an identity of the first sector based on the intercepted write operation, determine an entry in the change block bitmap file that corresponds with the first sector, and modify the entry in the change block bitmap file to indicate that data in the first sector has changed. The data agent may generate an incremental backup of the VM based on the change block bitmap file in response to an instruction from a storage manager, where the incremental backup includes the data in the first sector.
Abstract:
According to certain aspects, a method can include creating a backup copy of data associated with a virtual machine (VM) on one or more secondary storage devices, wherein the backup copy includes corresponding secondary copies of a plurality of files associated with the VM; analyzing metadata associated with the secondary copies to determine which of the plurality files are eligible to be removed from the primary storage device; in response determining that one or more files are eligible to be removed from the primary storage device, for respective file of the one or more files: determining whether the respective file has been changed since a first time at which the backup copy of the data associated with the VM was created; in response to determining that the respective file has not changed since the first time, removing the respective file; and adding a file placeholder for the removed file.