摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability-to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of said at least one disease state relative to recognition of the presence and/or the absence of said biopolymer, predict disease risk assessment, and develop therapeutic avenues against said disease.
摘要:
A method and system capture an image of the interior of the eye, for example the retina and determine whether the captured image is sufficient to provide data for identifying an individual or animal before attempting to generate the identification data. If the captured image is not sufficient, the method and system automatically capture another image of the interior of the eye.
摘要:
The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer, predict disease risk assessment, and develop therapeutic avenues against the disease.
摘要:
A photodynamic therapy includes a particular combination of a photosensitizer and light source for a photodynamic therapy used to treat ocular diseases. The photosensitizer has a peak excitation level when exposed to light of a given wavelength where the wavelength of light is absorbed at a particular location of the eye to be treated. The light source has a wavelength within the excitation range of the photosensitizer and matched to the location of the diseased eye tissue. The light source also has an irradiance level and energy level that is effective for therapy but at levels below the maximum permissible exposure level.