Abstract:
Systems and methods for detecting faults in the active damping of a logging tool are disclosed herein. A wellbore logging tool system comprises a processor, a memory, a wellbore logging tool comprising an acoustic transmitter, and a logging tool control module. The logging tool control module is operable to receive sensor signals from one or more sensors coupled to the wellbore logging tool after a damping control signal has been transmitted to the acoustic transmitter. The logging tool control module is also operable to determine one or more expected sensor signals, determine error values using the expected sensor signals and the sensor signals received from the one or more sensors, and compare the error values with one or more thresholds.
Abstract:
A directional drilling system includes a bottomhole assembly having a drill bit and a steering tool configured to adjust a drilling direction in real-time. The system also includes a first feedback loop that provides a first steering control signal to the steering tool, and a second feedback loop that provides a second steering control signal to the steering tool. The system also includes a set of sensors to measure at least one of strain and movement at one or more points along the bottom-hole assembly during drilling, wherein the first and second steering control signals are based in part on the strain or movement measurements.
Abstract:
Two control strategies may be implemented to optimize mud circulation in a drilling mud circulation system. In a networked control strategy, the mud circulation system does not involve any centralized controller yet all the local controllers can exchange information in real-time via a central data storage. The master-slave control strategy involves a centralized optimizer, and the subsystems are treated as slave systems and are driven by a visual master control system.
Abstract:
A mud sag monitoring system may be configured for real-time evaluation of sagging potential of a circulating mud. The monitoring system may include both physics-based sagging prediction models and data-driven sagging detection classifiers that allow for predicting the sagging potential. The sagging potential may also be quantified with a sagging severity index and associated with a specific location within the mud circulation system. The sagging severity and location predictions may provide a framework for mitigation of mud sagging using automatic control techniques.
Abstract:
Methods and systems for enhancing workflow performance in the oil and gas industry may estimate the properties of drilling muds (e.g., density and/or viscosity) located downhole with methods that utilize real-time data, estimated drilling mud properties, and mathematical models. Further, the methods described herein may optionally account for the uncertainties induced by sensor readings and dynamic modeling. For example, a method may include circulating a drilling mud through a mud circulation system; performing a plurality of measurements from various sensors in a mud circulation system; modeling in real-time drilling mud flow dynamics in the drilling mud using a mathematical dynamics model; predicting physical states of the drilling mud with the mathematical dynamics model, thereby producing model physical state predictions; inputting the measurements into the mathematical dynamics model; and adjusting discrepancies between the model physical state predictions and the measurements using the mathematical dynamics model.
Abstract:
Methods including the step of producing a bulk fluid from a subterranean formation, the bulk fluid comprising at least water and a hydrocarbon. The bulk fluid is then sampled to form at least one sampled fluid. Next, constituent parameters of the sampled fluid are determined using the hydrophilic-lipophilic deviation (HLD) model. The constituent parameters include the salinity (S) of the sampled fluid, the salinity constant (b); the equivalent alkane carbon number for the hydrocarbon in the sampled fluid (EACN); T is temperature of the sampled fluid; the characteristic curvature for an ionic surfactant composition (cc) or for a nonionic surfactant composition (ccn); the surfactant temperature constant for the ionic surfactant composition (αT) or for a nonionic surfactant composition (cT). Also determining an optimal surfactant or optimal surfactant blend to achieve an oil-water separation morphological phase distribution of the sampled fluid.
Abstract:
Techniques for managing a hydraulic fracturing operation include receiving a selection of a proxy model that represents a first principles model of a hydraulic fracturing operation, the proxy model including at least one property of a plurality of properties of the first principles model associated with the hydraulic fracturing operation; simulating the selected proxy model to generate a modeled output based on the property; and determining a value of a control setpoint for hydraulic fracturing operation equipment based on the modeled output.
Abstract:
A method of propagating pressure pulses in a well can include flowing a fluid composition through a variable flow resistance system which includes a vortex chamber having at least one inlet and an outlet, a vortex being created when the fluid composition spirals about the outlet, and a resistance to flow of the fluid composition alternately increasing and decreasing. The vortex can be alternately created and dissipated in response to flowing the fluid composition through the system. A well system can include a variable flow resistance system which propagates pressure pulses into a formation in response to flow of a fluid composition from the formation.
Abstract:
An example method for removal of stick-slip vibrations may comprise receiving a command directed to a controllable element of a drilling assembly. A smooth trajectory profile may be generated based, at least in part, on the command. A frictional torque value for a drill bit of the drilling assembly may be determined. The example method may further include generating a control signal based, at least in part, on the trajectory profile, the frictional torque value, and a model of the drilling assembly, and transmitting the control signal to the controllable element.
Abstract:
A pressure differential flow meter for determining the flow rate of a fluid comprises a constriction device, wherein the constriction device is capable of creating at least a first area of constriction and a second area of constriction having cross-sectional areas that are different, wherein the constriction device automatically moves from the first area of constriction to the second area of constriction when the pressure differential increases above or falls below a predetermined range, and wherein the pressure differential is based on the fluid velocity of the fluid flowing in the flow meter. A method of determining the flow rate of a fluid using the pressure differential flow meter comprises flowing the fluid through the flow meter.