Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may map individual enhanced control channel elements (eCCEs) of a physical resource block (PRB) pair to a plurality of non-continuous enhanced resource element groups (eREGs) of the PRB pair. The eNB may further map the plurality of eREGs to individual antenna ports for transmission to the UE, with individual antenna ports associated with a continuous group of eREGs. The eNB may assign at least a portion of an enhanced physical downlink control channel (ePDCCH) to one or more of the eCCEs for transmission to the UE. Additionally, or alternatively, an eNB may map eCCEs of a plurality of PRB pairs to a plurality of distributed resource block (DRB) pairs.
Abstract:
A station (STA) may operate as a first peer-to-peer (P2P) client (P2P1) for P2P operations with dual-stage triggering. The STA may decode a primary frame trigger frame (TF) from an access point (AP) operating as a coordinator. The primary TF may allocate resources in an initial portion of a time-duration allocation to the P2P1 for the P2P operations with one or more other peer stations, including a second P2P client (P2P2) and a third P2P client (P2P3). The primary TF may further allocate resources in a subsequent portion of the time-duration allocation to the P2P2 for the P2P operations. The STA may also encode a first secondary TF for transmission within the initial portion of the time-duration allocation. The first secondary TF may allocate specific resource units (RUs) to the one or more other peer stations. The STA may also decode a TB physical layer protocol data unit (TB PPDU) encoded in accordance with a multi-user orthogonal frequency division multiple access (MU OFDMA) frame format. The TB PPDU may be received concurrently within the initial portion of the time-duration allocation from the one or more other peer stations in accordance with an uplink OFDMA technique.
Abstract:
This disclosure describes systems, methods, and devices related to enhanced sounding for secure mode wireless communications. A device may generate a channel sounding symbol comprising a first subcarrier and a second subcarrier, wherein a first amplitude of the first subcarrier is different than a second amplitude of the second subcarrier. The device may generate a channel sounding signal comprising the channel sounding symbol. The device may send the channel sounding signal to a second device.
Abstract:
This disclosure describes systems, methods, and devices related to extremely high throughput (EHT) resource unit (RU) allocation. A device may utilize a tone plan to generate an EHT frame to be sent using an 80 MHz frequency band, wherein the tone plan comprises a plurality of null tones. The device may encode one or more resource units (RUs) for the EHT frame, wherein the one or more RUs comprise at least one of a 26-tone RU, a 52-tone RU, a 106-tone RU, a 242-tone RU, a 484-tone RU, or a 996-tone RU, wherein the 106-tone RU, the 242-tone RU, and the 484-tone RU comprise null tones located at least at subcarriers ±258, ±257, ±256, ±255, and ±254. The device may cause to send the EHT frame to a first station device using the 80 MHz frequency band.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.
Abstract:
An extremely high-throughput (EHT) station (STA) may encode an EHT PPDU for transmission on a plurality of subchannels. The EHT STA may determine a spectral mask to apply to the EHT PPDU prior to transmission of the EHT PPDU. When preamble puncturing is performed, the EHT STA may apply an overall spectral mask to the EHT PPDU prior to transmission. The overall spectral mask may be based on an interim spectral mask and a preamble-puncture spectral mask. The subchannels may be in a 6 GHz band and the EHT STA may determine if preamble puncturing is to be performed for one or more of the subchannels based on a presence of incumbents in the one or more of the subchannels, although the scope of the embodiments is not limited in this respect.
Abstract:
This disclosure describes systems, methods, and devices related to uplink (UL) null data packet (NDP) format for passive location. A device may cause to send a trigger frame that solicits poll response to one or more anchor stations involved in a passive ranging measurement. The device may identify one or more polling response frames received from the one or more anchor stations. The device may cause to send a trigger frame that solicits uplink null data packet (NDP) to the one or more anchor stations, wherein the uplink NDP comprises an indication of a high efficiency (HE) single user (SU) frame type. The device may identify one or more uplink NDPs received from the one or more anchor stations.
Abstract:
This disclosure describes systems, methods, and devices related to enhanced feedback for secure mode wireless communications. A device may send a first null data packet (NDP) to a second device, and identify a second NDP received from the second device. The device may identify a location measurement report (LMR) received from the second device, the LMR including a first channel response indicative of a first arrival time of the first NDP at the second device and a first phase shift associated with the first NDP. The device may generate a second channel response indicative of a second arrival time of the second NDP at the device and a second phase shift associated with the second NDP. The device may determine that the first channel response does not match the second channel response, and may identify an attempted attack.
Abstract:
This disclosure describes systems, methods, and devices related to null data packet (NDP) frame format. A device may cause to send a null data packet announcement (NDPA) frame to a responding station device (RSTA). The device may cause to send a first sounding NDP frame comprising one or more fields formatted to support 2.4 gigahertz (GHz) and 5 GHz bands in a non-trigger-based ranging measurement with the RSTA. The device may identify after a passage of a short inter-frame space (SIFS) time a second NDP frame received from the RSTA. The device may identify a location measurement report frame from the RSTA.
Abstract:
A next generation vehicle-to-everything (NGV) station (STA) operating as an initiating station (ISTA) for performing non-trigger-based NGV ranging may encode an NGV ranging null-data packet (NDP) announcement (NGV NDPA) frame for transmission to a responding station (RSTA) to initiate the non-trigger-based NGV ranging. The NGV STA may also encode an initiator-to-responder (I2R) NGV ranging null-data packet (NDP) (I2R NGV ranging NDP) for transmission following the NGV NDPA frame. The I2R NGV ranging NDP may be encoded in accordance with a NGV Ranging NDP format that may include an NGV signal field (NGV-SIG), a repeated NGV-SIG (RNGV-SIG), an NGV Short Training field (NGV-STF) and an NGV long training field (NGV-LTF). The NGV-LTF may include one or two sets of LTF symbols depending on a number of LTF symbol repetitions (LTF_REP). Each set of LTF symbols may have one or two LTF symbols depending on a number of spatial streams (NUM_SS) and the NGV-LTF may be encoded without a packet extension (PE).