Abstract:
A plasma display panel having an increased aperture ratio which improves luminous efficiency, and having increased discharge uniformity in a discharge space enhancing luminance, comprises: a front substrate and a rear substrate separated from each other; barrier ribs interposed between the front substrate and the rear substrate to partition discharge cells; discharge electrodes separated from each other and disposed between the front substrate and the rear substrate to generate a discharge; and fluorescent layers formed in the discharge cells. Two or more discharge spaces are formed in each of the discharge cells. Since two or more discharge cells are formed in one discharge cell, discharge uniformity is increased in a discharge space, thereby improving luminance.
Abstract:
A plasma display panel includes first and second substrates that face each other, a barrier rib structure that is disposed between the first and second substrates to divide a plurality of discharge cells, first and second electrodes that are formed to surround the discharge cells and that extend in a first direction. The first and second electrodes are buried in the barrier rib structure. Address electrodes are formed in a second direction crossing the first direction to correspond to the respective discharge cells, and phosphor layers are formed in the respective discharge cells, such that the discharge cells are divided into red, green, blue, and white discharge cells.
Abstract:
A Plasma Display Panel (PDP) includes: a front substrate; a rear substrate opposite to the front substrate; a dielectric wall arranged between the front and rear substrates to define discharge cells together with the front and rear substrates; pairs of discharge sustaining electrodes separately arranged along respective discharge cells and including a plurality of X electrodes and a plurality of Y electrodes buried in the dielectric wall; address electrodes arranged on the rear substrate and buried in a dielectric layer; and first, second, and third color phosphor layers coated in the discharge cells; wherein sectional areas of the X and Y electrodes vary with discharge distances of the X and Y electrodes with respect to portions of the X and Y electrodes where a discharge starts.
Abstract:
A plasma display panel including a first substrate and a second substrate facing each other, barrier ribs disposed between the first substrate and the second substrate and defining a plurality of discharge cells, pairs of first electrodes disposed at side surfaces of the barrier ribs and opposing each other in each discharge cell, pairs of second electrodes disposed at side surfaces of the barrier ribs and opposing each other in each discharge cell and which extend in a direction to intersect the first electrodes, and a dielectric layer covering the first and the second electrodes. The first electrodes and the second electrodes have at least two discharge units in each discharge cell.
Abstract:
A plasma display panel capable of reducing or preventing panel breakage and aging failure during the aging process for discharge stabilization. The plasma display panel includes first and second substrates facing each other and having a display region at a center of the substrates, a non-display region formed around a periphery of the display region, and an intermediate region disposed between the display region and the non-display region. Address electrodes are formed on the first substrate and extend parallel to each other. Barrier ribs are arranged at the display region and the intermediate region. The barrier ribs define discharge cells between the substrates. Display electrodes are formed on the second substrate in a direction crossing the address electrodes. An area ratio of the display electrodes to corresponding discharge cells in the intermediate region is smaller than the area ratio thereof in the display region.
Abstract:
A plasma display panel (PDP) that has a front substrate, a rear substrate arranged opposite to the front substrate, closed-type front barrier ribs arranged between the front substrate and the rear substrate and formed of a dielectric material, the front barrier ribs defining discharge cells together with the front and rear substrates, front and rear discharge electrodes arranged within the front barrier ribs and surrounding the discharge cells and spaced apart from each other, phosphor layers arranged within the discharge cells and a discharge gas injected into discharge cells.
Abstract:
A plasma display panel (PDP) which can reduce the cost and time of manufacturing a plasma display device, and which can improve heat transfer efficiency of a plasma display device, comprises: a transparent front substrate; a rear substrate disposed parallel to the front substrate; an electromagnetic wave shielding layer fixed on the front substrate; a plurality of discharge cells defined by barrier ribs disposed between the front substrate and the rear substrate; a plurality of address electrodes extending over the discharge cells and disposed in a given direction; a rear dielectric layer covering the address electrodes; a plurality of fluorescent layers disposed in the discharge cells; a plurality of sustaining electrode pairs extending in a direction which crosses the given direction of the address electrodes; a front dielectric layer covering the sustaining electrode pairs; and a discharge gas filling the discharge cells.
Abstract:
The plasma display panel includes a first substrate and a second substrate, address electrodes formed on the second substrate, barrier ribs arranged in a space between the first substrate and the second substrate to define a plurality of discharge cells and non-discharge regions, phosphor layers formed within each of the discharge cells, and display electrodes formed on the first substrate, having a sustain electrode (X electrode) and a scan electrode (Y electrode) in a corresponding pair within each of the discharge cells. The discharge cells are arranged to alternate “A” and “B” sections, where the distances (pitches) between the centers of the adjacent discharge cells are respectively “a” and “b” (a
Abstract:
The AC plasma display panel (PDP) has electrodes arranged to correspond to each discharge cell between two substrates, address electrodes for the selection of display cells are formed on one substrate, and a pair of display electrodes for display discharge are formed on the other substrate. The plasma display panel includes a first substrate and a second substrate opposing each other; display electrodes formed along one direction on the first substrate, being parallel to one another; address electrodes formed on the second substrate along the direction intersecting the display electrodes, and being parallel to one another; barrier ribs arranged in the space between the first substrate and the second substrate to define a plurality of discharge cells; and phosphor layers formed in each of the discharge cells. Then, expanded portions are formed in the regions of the address electrodes that correspond to the outermost discharge cells adjacent to the edges of both of the substrates.
Abstract:
A plasma display panel (PDP) includes first and second substrates opposing one another with a predetermined gap therebetween. The PDP also includes address electrodes formed on a surface of the first substrate opposing the second substrate, and barrier ribs formed in the gap between the first and second substrates. The barrier ribs define discharge cells, and a phosphor layer is formed in each of the discharge cells. Further, discharge sustain electrodes made of a metal material are formed on a surface of the second substrate opposing the first substrate. The discharge sustain electrodes include line sections, each pair of which is formed corresponding to each discharge cell, and extensions are formed extending from the line sections into each of the discharge cells to define openings. Also, indentations are formed in distal ends of each of the extensions such that discharge gaps of differing sizes are formed between each pair of the extensions.