摘要:
The present invention generally relates to a TMR reader and a method for its manufacture. The TMR reader discussed herein adds a shield layer to the sensor structure. The shield layer is deposited over the capping layer so that the shield layer and the capping layer collectively protect the free magnetic layer within the sensor structure from damage during further processing. Additionally, the hard bias layer is shaped such that the entire hard bias layer underlies the hard bias capping layer so that a top lead layer is not present. By eliminating the top lead layer and including a shield layer within the sensor structure, the read gap is reduced while still protecting the free magnetic layer during later processing.
摘要:
A current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) or giant magnetoresistance (GMR) read sensor with ferromagnetic amorphous buffer and polycrystalline seed layers is disclosed for reducing a read gap, in order to perform magnetic recording at higher linear densities. The ferromagnetic amorphous buffer and polycrystalline seed layers couples to a ferromagnetic lower shield, thus acting as part of the ferromagnetic lower shield and defining the upper surface of the ferromagnetic polycrystalline seed layer as the lower bound of the read gap. In addition, a CPP TMR or GMR read sensor with nonmagnetic and ferromagnetic cap layers is also disclosed for reducing the read gap, in order to perform magnetic recording at even higher linear densities. The ferromagnetic cap layer couples to a ferromagnetic upper shield, thus acting as part of the ferromagnetic upper shield and defining the lower surface of the ferromagnetic cap layer as the upper bound of the read gap.
摘要:
A current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) or giant magnetoresistance (GMR) read sensor with ferromagnetic buffer, shielding and seed layers is proposed for high-resolution magnetic recording. The ferromagnetic buffer layer is preferably formed of an amorphous Co—X (where X is Hf, Y, Zr, etc.) film. It provides the CPP read sensor with microstructural discontinuity from a ferromagnetic lower shield, thus facilitating the CPP read sensor to grow freely with preferred crystalline textures, and with ferromagnetic continuity to the ferromagnetic lower shield, thus acting as a portion of the ferromagnetic lower shield. The ferromagnetic shielding layer is preferably formed of a polycrystalline Ni—Fe film. It exhibits magnetic properties exactly identical to those of the ferromagnetic lower shield, thus acting identically as the ferromagnetic lower shield, and a uniform columnar grain morphology, thus initiating a uniform large grain morphology in the CPP read sensor.
摘要:
A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment, the multiple reference layers of a CPP read sensor include a first reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film, a second reference layer (e.g., Co—Fe—Hf) formed by a ferromagnetic amorphous film, a third reference layer (e.g., Co—Fe—B) formed by a ferromagnetic amorphous film, and a fourth reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film. A plasma treatment is applied to the fourth reference layer for surface smoothening, and no replenishment is needed as long as the fourth reference layer is not completely removed after the plasma treatment. The fourth reference layer protects the surface of the third reference layer from spin polarization deterioration caused by the plasma treatment, thereby maintaining a strong TMR or GMR effect.
摘要:
A current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) or giant magnetoresistance (GMR) read sensor with ferromagnetic amorphous buffer and polycrystalline seed layers is disclosed for reducing a read gap, in order to perform magnetic recording at higher linear densities. The ferromagnetic amorphous buffer and polycrystalline seed layers couples to a ferromagnetic lower shield, thus acting as part of the ferromagnetic lower shield and defining the upper surface of the ferromagnetic polycrystalline seed layer as the lower bound of the read gap. In addition, a CPP TMR or GMR read sensor with nonmagnetic and ferromagnetic cap layers is also disclosed for reducing the read gap, in order to perform magnetic recording at even higher linear densities. The ferromagnetic cap layer couples to a ferromagnetic upper shield, thus acting as part of the ferromagnetic upper shield and defining the lower surface of the ferromagnetic cap layer as the upper bound of the read gap.
摘要:
A system in one approach includes a sensor stack formed of a plurality of thin film layers; a shunt formed of at least some of the same layers as the sensor stack, the shunt being spaced from the sensor stack; a first lead coupled to the sensor stack and the shunt; and a second lead coupled to the sensor stack and the shunt. A method in one embodiment includes forming a plurality of thin film layers; removing a portion of the thin film layers for defining at least a portion of a sensor stack and at least a portion of a shunt spaced front the sensor stack; forming a first lead coupled to the at least a portion of the sensor stack and the at least a portion of the shunt and a second lead coupled to the at least a portion of the sensor stack and the at least a portion of the shunt. Additional systems and methods are also presented.
摘要:
A read sensor with a uniform longitudinal bias (LB) stack is proposed. The read sensor is a giant magnetoresistance (GMR) sensor used in a current-in-plane (CIP) or a current-perpendicular-to-plane (CPP) mode, or a tunneling magnetoresistance (TMR) sensor used in the CPP mode. The transverse pinning layer of the read sensor is made of an antiferromagnetic Pt—Mn, Ir—Mn or Ir—Mn—Cr film. In one embodiment of this invention, the uniform LB stack comprises a longitudinal pinning layer, preferable made of an antiferromagnetic Ir—Mn—Cr or Ir—Mn film, in direct contact with and exchange-coupled to sense layers of the read sensor. In another embodiment of the present invention, the uniform LB stack comprises the Ir—Mn—Cr or Ir—Mn longitudinal pinning layer exchange coupled to a ferromagnetic longitudinal pinned layer, and a nonmagnetic antiparallel-coupling spacer layer sandwiched between and the ferromagnetic longitudinal pinned layer and the sense layers.
摘要:
A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment of the invention, the multiple reference layers of a CPP tunneling magnetoresistance (TMR) read sensor includes a first reference layer formed by a ferromagnetic polycrystalline Co—Fe film, a second reference layer formed by a ferromagnetic substitute-type amorphous Co—Fe—X film where X is Hf, Zr or Y, and a third reference layer formed by a ferromagnetic interstitial-type amorphous Co—Fe—B film. The first reference layer facilitates the CPP TMR read sensor to exhibit high exchange and antiparallel-coupling fields. The second reference layer provides a thermally stable flat surface, thus facilitating the CPP TMR read sensor to exhibit a low ferromagnetic-coupling field. The multiple reference layers may induce spin-dependent scattering, thus facilitating the CPP TMR sensor to exhibit a high TMR coefficient.
摘要:
A tunneling magnetoresistive (TMR) sensor with a free layer made of a Co—Fe—B alloy is disclosed. After annealing at a temperature of less than 300° C., the Co—Fe—B free layer exhibits a negative or zero saturation magnetostriction, λS, while the TMR sensor exhibits superior TMR properties. The Co—Fe—B free layer has an Fe content of not greater than 10 atomic percent, and a B content of not greater than 10 atomic percent. Alternatively, a free-layer structure is used in place of the Co—Fe—B free layer The free-layer structure includes a first free layer lying on a barrier layer and a second free layer lying on the first free layer. The first free layer is made of an alloy selected from Co—Fe, Co—B and Co—Fe—B alloys, while the second free layer is made of an alloy selected from Co—B and Co—Fe—B alloys. The first free layer has an Fe content of not greater than 10 atomic percent, and a B content of not greater than 10 atomic percent. The second free layer has an Fe content of not greater than 20 atomic percent, and a B content of not greater than 20 atomic percent. After annealing for 2 to 20 hours at a temperature ranging from 220° C. up to 300° C., the free-layer structure exhibits a negative saturation magnetostriction, λS, while the TMR sensor exhibits a very high TMR coefficient at a very low junction resistance-area product. By adjusting the compositions and thicknesses of the first and second Co—Fe—B free layers, it is possible to “tune” to any desired value of saturation magnetostriction, λS, in the range of −1×10−5
摘要:
A method for manufacturing a tunnel junction magnetoresistive sensor having improved magnetic performance and reliability. The method includes depositing a Mg—O barrier layer in a sputter deposition tool in a chamber having an oxygen concentration that changes. For example, the sputter deposition could be initiated with a first oxygen concentration in the chamber, and then, during the deposition of the barrier layer the oxygen concentration can be reduced.