Abstract:
The invention provides a new positive electrode active material having increased capacity and a method for operating an electrochemical lithium cell or battery which has the new positive electrode active material composition. The positive electrode comprises first and second lithium-containing active materials which are different from one another. The invention provides the ability to overcome first cycle inefficiency typically observed when using a single lithium-containing metal chalcogenide by adding a small amount of a second lithium-containing metal chalcogenide, preferably lithium copper oxide.
Abstract:
A method of improving the structural integrity of polymer electrolytes of electrochemical cell by employing lithiated zeolites, and optionally, inorganic fillers selected from SiO.sub.2, Al.sub.2 O.sub.3, TiO.sub.2 and ZrO is provided.
Abstract translation:提供了通过使用锂化沸石和任选的选自SiO 2,Al 2 O 3,TiO 2和ZrO的无机填料来改善电化学电池的聚合物电解质的结构完整性的方法。
Abstract:
Non-aqueous electrochemical cells with improved performance can be fabricated by employing anodes comprising a composition having graphite particles that have a BET method specific surface area of about 6 to about 12 m.sup.2 /g and a crystallite height L.sub.c of about 100 nm to about 120 nm, and wherein at least 90% (wt) of the graphite particles are less than 16 .mu.m in size; a cathode; and a non-aqueous electrolyte containing a solvent and salt that is interposed between the anode and cathode. When employed in an electrochemical cell, the anode can attain a specific electrode capacity of at least 300 mAhr/g. The electrochemical cell has a cycle life of greater than 1500 cycles, and has a first cycle capacity loss of only about 10% to about 15%.
Abstract:
A concealed door hingedly-affixed to a concealed door frame adapted to resemble shelving and cabinets, the concealed door assembly simulated permanently-affixed shelving and cabinets, and comprising a playless hinge and various overlapping, double-stacked and interconnected components.
Abstract:
Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
Abstract:
The present invention provides composition comprising at least one lithium-containing transition metal sulfide and carbon, wherein particles of the carbon are dispersed at the microscopic level on individual particles of the lithium-containing transition metal sulfide.
Abstract:
Sodium ion batteries are based on sodium based active materials selected among compounds of the general formula AaMb(XY4)c wherein A comprises sodium, M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, and XY4 represents phosphate or a similar group. The anode of the battery includes a carbon material that is capable of inserting sodium ions. The carbon anode cycles reversibly at a specific capacity greater than 100 mAh/g.
Abstract:
The invention provides an electrochemical cell which includes a first electrode and a second electrode which is a counter electrode to said first electrode, and an electrolyte material interposed there between. The first electrode includes an alkali metal phosphorous compound doped with an element having a valence state greater than that of the alkali metal.
Abstract:
The invention provides an electrochemical cell which includes a first electrode having a electrode active material, a second electrode which is a counter electrode to the first electrode, and an electrolyte. The negative electrode active material is represented by the general formula EfTigDhOi.