Abstract:
When using micro-resonant structures which are being excited and caused to resonate by use of a charged particle beam, whether as emitters or receivers, especially in a chip or circuit board environment, it is important to prevent the charged particle beam from coupling to or affecting other structures or layers in the chip or circuit board. Shielding can be provided along the path of the charged particle beam, on top of the substrate, to prevent such coupling.
Abstract:
A device for coupling energy in a plasmon wave to an electron beam includes a metal transmission line having a pointed end; a generator mechanism constructed and adapted to generate a beam of charged particles; and a detector microcircuit disposed adjacent to the generator mechanism. The generator mechanism and the detector microcircuit are disposed adjacent the pointed end of the metal transmission line and wherein a beam of charged particles from the generator mechanism to the detector microcircuit electrically couples the plasmon wave traveling along the metal transmission line to the microcircuit.
Abstract:
A sensor device includes a substrate having first and second regions of first and second conductivity types, respectively. A junction having a band-gap is formed between the first and second regions. A plasmon source generates plasmons having fields. At least a portion of the plasmon source is formed near the junction, and the fields reduce the band-gap to enable a current to flow through the device.
Abstract:
A charged particle beam including charged particles (e.g., electrons) is generated from a charged particle source (e.g., a cathode or scanning electron beam). As the beam is projected, it passes between plural alternating electric fields. In one embodiment, the electric fields alternate not only on the same side but across from each other as well. The attraction of the charged particles to their oppositely charged fields accelerates the charged particles, thereby increasing their velocities in the corresponding (positive or negative) direction. The velocity oscillation direction can be either perpendicular to the direction of motion of the beam or parallel to the direction of motion of the beam.
Abstract:
An antenna system includes a dielectric structure formed on a substrate; an antenna, partially within the dielectric structure, and supported by the dielectric structure; a reflective surface formed on the substrate. A shield blocks radiation from a portion of the antenna and from at least some of the dielectric structure. The shield is supported by the dielectric structure.
Abstract:
A device for determining the state of a magnetic element includes an emitter constructed and adapted to emit a charged particle beam; a bi-state magnetic cell disposed on a path of the particle beam, whereby the particle beam is deflected along a first deflection path when the cell is in a first magnetic state, and the particle beam is deflected along a second deflection path, distinct from the first deflection path, when the cell is in a second magnetic state. At least one ultra-small resonant structure positioned on the deflection paths.
Abstract:
A process to produce ultra-small structures of between ones of nanometers to hundreds of micrometers in size, in which the structures are compact, nonporous and exhibit smooth vertical surfaces. Such processing is accomplished using a non-conductive or semi-conductive substrate on which a layer of a conductive material, such as a conductive polymer, is applied, and on which a second layer of a masking material, such as a pattern resist material, is applied. Following patterning of the second resist layer, and either the full or partial etching of the conductive polymer, or alternatively omitting the step of etching the conductive layer, electroplating techniques will be used to produce ultra-small structures on the substrate or alternatively directly on the conductive layer, after which either all of remaining portions of the conductive polymer layer and the resist layer will be removed, or only the resist layer will be removed, or alternatively neither will be removed.
Abstract:
A device couples energy from an electromagnetic wave to charged particles in a beam. The device includes a micro-resonant structure and a cathode for providing electrons along a path. The micro-resonant structure, on receiving the electromagnetic wave, generates a varying field in a space including a portion of the path. Electrons are deflected or angularly modulated to a second path.
Abstract:
A diamond field emission tip and methods of forming such diamond field emission tips, for use with cathodes that will act as a source of and emit beams of charged particles.
Abstract:
An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated within a series of spiral-shaped anodes to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to the sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.