Abstract:
The present invention relates to a method and apparatus for registering an access point through a WiFi network using information obtained from a common device in a cellular-WiFi convergence system. The present invention provides a method in which a sub-RAT system entity obtains main RAT system information through a common device and a WiFi network thereof in a communication system in which a cellular system and a WiFi system are converged, and notifies a managing device of information thereon through the WiFi network.
Abstract:
A method and apparatus of acquiring information on a primary radio access technology (RAT) system in a wireless communication system is provided. An entity of a secondary RAT system transmits a request for information on the primary RAT system to a multi-RAT device, and upon transmitting the request, starting a waiting timer which has a default value. If it is determined that the information on the primary RAT system cannot be acquired, by the multi-RAT device, until the waiting timer expires, the entity of the secondary RAT system reconfigures the waiting timer by a fixed value or a dynamic value.
Abstract:
This method whereby abase station in a first communication system updates base station information in a converged network supporting multiple communication systems may comprise the steps of: receiving a first message including changed information from a base station in a second communication system if information from and related to the base station in the second communication system has changed or if information related to the base station in the first communication system has changed; and updating with the changed information on the basis of the first message.
Abstract:
According to one embodiment of the present invention, a method for transmitting a reception acknowledgement response by an user equipment for performing device-to-device communication in a wireless communication system, comprises the steps of: receiving a physical downlink shared channel; and transmitting a reception acknowledgement response for the physical downlink shared channel on a resource for a physical uplink control channel, wherein the reception acknowledgement response is transmitted according to a setting of a round trip time (RTT), and the RTT is set for each user equipment.
Abstract:
The present invention relates to a method for transmitting and receiving signals in a wireless communication system, where a second terminal transmits and receives a signal to and from a first terminal for device-to-device communication. The method includes the steps of: receiving a first signal from a first terminal; measuring a channel using the first signal and transmitting channel state information to a third terminal; and receiving control information from the third terminal in response to the transmission of the channel state information, wherein the channel state information pertains to a communication link between the first and second terminals.
Abstract:
A method for providing scalable service in a wireless communication system is disclosed. In this method, the transmitting side device performs initial transmission of base layer signals to a user equipment (UE) based on a HARQ (Hybrid Automatic Repeat Request) scheme, and performs transmission of enhancement layer signals to the UE after finishing the initial transmission of the base layer signals. The base layer signals and the enhancement layer signals are for one scalable service. The base layer signals can be independently used at the UE without the enhancement layer signals, while the enhancement layer signals cannot be used at the UE without the base layer signals. The transmitting side device further performs retransmission of the base layer signals determined to be retransmitted based on the HARQ scheme while performing the initial transmission of the enhancement layer signals.
Abstract:
A method of performing paging by a first D2D terminal in a wireless communication system supporting D2D communication includes: obtaining information on a paging slot, the paging slot being designated to be dedicated to the first D2D terminal for the D2D communication and including a plurality of paging sections; monitoring whether a signal for the first D2D terminal is transmitted in a first paging section in the obtained paging slot through a region assigned to the first D2D terminal; monitoring whether a paging request message is transmitted in a paging region only for the first D2D terminal in a second paging section if the signal is detected; and transmitting a paging response message through a third paging section to the second D2D terminal that transmits the paging request signal, as a response to the paging request message, if the paging request message is detected.
Abstract:
The present invention relates to a method for receiving control information on a terminal in a wireless communication system, including the steps of: transmitting uplink data to a base station through a physical uplink shared channel; and receiving a downlink control information (DCI) format related to an uplink approval, wherein, when the DCI format meets predetermined conditions, the terminal considers the DCI format as an acknowledgement for the uplink data.
Abstract:
The present invention relates to a bundling scheduling method in a wireless access system and an apparatus therefor. Specifically, the bundling scheduling method in the wireless access system comprises the steps of: transmitting the bundled downlink control information including a plurality of downlink control information through one physical downlink control channel (PDCCH) to a terminal; transmitting the downlink data, to the terminal, through a plurality of physical downlink shared channels (PDSCH) scheduled by the bundled downlink control information; and receiving acknowledgement/negative-acknowledgement (ACK/NACK) information for the plurality of PDSCHs from the terminal.
Abstract:
A method for performing a channel switch by user equipment of a first communication system in a network converging a plurality of communication systems, may comprise receiving, a channel switch command message including a switch time and a new channel number, from a base station of the first communication system; transmitting a channel switch response message indicating acceptance of a channel switch when the new channel number is supported by the user equipment, to the base station of the first communication system in a response to the channel switch command message; receiving a channel switch notification message, which notifies of a channel switch, from a base station of the second communication system; and receiving data from the base station of the second communication system via a channel corresponding to the new channel number based on the switch time and the new channel number according to the channel switch notification message.